Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(30): e2404164121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39012823

RESUMEN

The development of advanced neural modulation techniques is crucial to neuroscience research and neuroengineering applications. Recently, optical-based, nongenetic modulation approaches have been actively investigated to remotely interrogate the nervous system with high precision. Here, we show that a thin-film, silicon (Si)-based diode device is capable to bidirectionally regulate in vitro and in vivo neural activities upon adjusted illumination. When exposed to high-power and short-pulsed light, the Si diode generates photothermal effects, evoking neuron depolarization and enhancing intracellular calcium dynamics. Conversely, low-power and long-pulsed light on the Si diode hyperpolarizes neurons and reduces calcium activities. Furthermore, the Si diode film mounted on the brain of living mice can activate or suppress cortical activities under varied irradiation conditions. The presented material and device strategies reveal an innovated optoelectronic interface for precise neural modulations.


Asunto(s)
Neuronas , Optogenética , Silicio , Animales , Silicio/química , Neuronas/fisiología , Ratones , Optogenética/métodos , Calcio/metabolismo , Luz , Encéfalo/fisiología
2.
Brain ; 146(8): 3373-3391, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36825461

RESUMEN

GGC repeat expansion in the 5' untranslated region (UTR) of NOTCH2NLC is associated with a broad spectrum of neurological disorders, especially neuronal intranuclear inclusion disease (NIID). Studies have found that GGC repeat expansion in NOTCH2NLC induces the formation of polyglycine (polyG)-containing protein, which is involved in the formation of neuronal intranuclear inclusions. However, the mechanism of neurotoxicity induced by NOTCH2NLC GGC repeats is unclear. Here, we used NIID patient-specific induced pluripotent stem cell (iPSC)-derived 3D cerebral organoids (3DCOs) and cellular models to investigate the pathophysiological mechanisms of NOTCH2NLC GGC repeat expansion. IPSC-derived 3DCOs and cellular models showed the deposition of polyG-containing intranuclear inclusions. The NOTCH2NLC GGC repeats could induce the upregulation of autophagic flux, enhance integrated stress response and activate EIF2α phosphorylation. Bulk RNA sequencing for iPSC-derived neurons and single-cell RNA sequencing (scRNA-seq) for iPSC-derived 3DCOs revealed that NOTCH2NLC GGC repeats may be associated with dysfunctions in ribosome biogenesis and translation. Moreover, NOTCH2NLC GGC repeats could induce the NPM1 nucleoplasm translocation, increase nucleolar stress, impair ribosome biogenesis and induce ribosomal RNA sequestration, suggesting dysfunction of membraneless organelles in the NIID cellular model. Dysfunctions in ribosome biogenesis and phosphorylated EIF2α and the resulting increase in the formation of G3BP1-positive stress granules may together lead to whole-cell translational inhibition, which may eventually cause cell death. Interestingly, scRNA-seq revealed that NOTCH2NLC GGC repeats may be associated with a significantly decreased proportion of immature neurons while 3DCOs were developing. Together, our results underscore the value of patient-specific iPSC-derived 3DCOs in investigating the mechanisms of polyG diseases, especially those caused by repeats in human-specific genes.


Asunto(s)
ADN Helicasas , ARN Helicasas , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas con Motivos de Reconocimiento de ARN , Regiones no Traducidas 5' , Cuerpos de Inclusión Intranucleares , Ribosomas , Expansión de Repetición de Trinucleótido/genética
3.
Angew Chem Int Ed Engl ; 63(25): e202402375, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38619528

RESUMEN

Open-shell conjugated polymers with a high intrinsic conductivity and high-spin ground state hold considerable promise for applications in organic electronics and spintronics. Herein, two novel acceptor-acceptor (A-A) conjugated polymers based on a highly electron-deficient quinoidal benzodifurandione unit have been developed, namely DPP-BFDO-Th and DPP-BFDO. The incorporation of the quinoidal moiety into the polymers backbones enables deeply aligned lower-lying lowest unoccupied molecular orbital (LUMO) levels of below -4.0 eV. Notably, DPP-BFDO exhibits an exceptionally low LUMO (-4.63 eV) and a high-spin ground state characterized by strong diradical characters. Moreover, a self-doping through intermolecular charge-transfer is observed for DPP-BFDO, as evidenced by X-ray photoelectron spectroscopy (XPS) studies. The high carrier concentration in combination with a planar and linear conjugated backbone yields a remarkable electrical conductivity (σ) of 1.04 S cm-1 in the "undoped" native form, ranking among the highest values reported for n-type radical-based conjugated polymers. When employed as an n-type thermoelectric material, DPP-BFDO achieves a power factor of 12.59 µW m-1 K-2. Furthermore, upon n-doping, the σ could be improved to 65.68 S cm-1. This study underscores the great potential of electron-deficient quinoidal units in constructing dopant-free n-type conductive polymers with a high-spin ground state and exceptional intrinsic conductivity.

4.
J Neuroinflammation ; 20(1): 125, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37231449

RESUMEN

The meninges, membranes surrounding the central nervous system (CNS) boundary, harbor a diverse array of immunocompetent immune cells, and therefore, serve as an immunologically active site. Meningeal immunity has emerged as a key factor in modulating proper brain function and social behavior, performing constant immune surveillance of the CNS, and participating in several neurological diseases. However, it remains to be determined how meningeal immunity contributes to CNS physiology and pathophysiology. With the advances in single-cell omics, new approaches, such as single-cell technologies, unveiled the details of cellular and molecular mechanisms underlying meningeal immunity in CNS homeostasis and dysfunction. These new findings contradict some previous dogmas and shed new light on new possible therapeutic targets. In this review, we focus on the complicated multi-components, powerful meningeal immunosurveillance capability, and its crucial involvement in physiological and neuropathological conditions, as recently revealed by single-cell technologies.


Asunto(s)
Meninges , Enfermedades del Sistema Nervioso , Humanos , Sistema Nervioso Central
5.
Ann Neurol ; 91(5): 704-715, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35152460

RESUMEN

OBJECTIVE: CGG/GGC repeat expansion in FMR1 and NOTCH2NLC is reportedly associated with movement disorders; therefore, we hypothesized that the CGG repeat expansion in LRP12, NUTM2B-AS1, and GIPC1, which was previously identified in myopathy, might also be associated with movement-disorder phenotypes. Here, we investigated whether CGG repeat expansion in LRP12, NUTM2B-AS1, and GIPC1 presents in a cohort of patients with movement disorders. METHODS: We screened for the CGG repeat expansion in LRP12, NUTM2B-AS1, and GIPC1 in 1,346 movement-disorder patients and 1,451 matched healthy controls. RESULTS: No patients or controls harbored expanded CGG repeats in LRP12 or NUTM2B-AS1, whereas 16 patients harbored >40 CGG repeats in GIPC1, with 11 of these patients harboring >60 CGG repeats. One control individual harbored an expanded GIPC1 allele (83 CGG units), suggesting that approximately 1% of patients affected by movement disorders in our population might harbor GIPC1 CGG repeat expansion, with this likely extremely rare in healthy controls (<0.001). The clinical phenotypes of the GIPC1 CGG repeat-positive patients strongly resembled those in patients displaying NOTCH2NLC GGC repeat-positive movement disorders. Additionally, the GIPC1 CGG repeat-positive patients presented white-matter hyperintensities but without typical NOTCH2NLC-related high-intensity signals in the corticomedullary junction. Furthermore, 44% of the GIPC1 CGG repeat-positive patients showed a cognitive deficit, and skin biopsies in 2 patients revealed deposition of intranuclear inclusions. INTERPRETATION: The CGG repeat expansion in GIPC1 might be associated with movement-disorder phenotypes and lead to diseases related to intranuclear inclusions. ANN NEUROL 2022;91:704-715.


Asunto(s)
Trastornos del Movimiento , Distrofias Musculares , Proteínas Adaptadoras Transductoras de Señales/genética , Estudios de Cohortes , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Humanos , Cuerpos de Inclusión Intranucleares/patología , Trastornos del Movimiento/genética , Distrofias Musculares/genética , Expansión de Repetición de Trinucleótido/genética
6.
Mov Disord ; 38(12): 2258-2268, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37990409

RESUMEN

BACKGROUND: Patients with Parkinson's disease (PD) have consistently demonstrated brain structure abnormalities, indicating the presence of shared etiological and pathological processes between PD and brain structures; however, the genetic relationship remains poorly understood. OBJECTIVE: The aim of this study was to investigate the extent of shared genetic architecture between PD and brain structural phenotypes (BSPs) and to identify shared genomic loci. METHODS: We used the summary statistics from genome-wide association studies to conduct MiXeR and conditional/conjunctional false discovery rate analyses to investigate the shared genetic signatures between PD and BSPs. Subsequent expression quantitative trait loci mapping in the human brain and enrichment analyses were also performed. RESULTS: MiXeR analysis identified genetic overlap between PD and various BSPs, including total cortical surface area, average cortical thickness, and specific brain volumetric structures. Further analysis using conditional false discovery rate (FDR) identified 21 novel PD risk loci on associations with BSPs at conditional FDR < 0.01, and the conjunctional FDR analysis demonstrated that PD shared several genomic loci with certain BSPs at conjunctional FDR < 0.05. Among the shared loci, 16 credible mapped genes showed high expression in the brain tissues and were primarily associated with immune function-related biological processes. CONCLUSIONS: We confirmed the polygenic overlap with mixed directions of allelic effects between PD and BSPs and identified multiple shared genomic loci and risk genes, which are likely related to immune-related biological processes. These findings provide insight into the complex genetic architecture associated with PD. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Estudio de Asociación del Genoma Completo , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética , Predisposición Genética a la Enfermedad/genética , Fenotipo , Encéfalo/diagnóstico por imagen , Polimorfismo de Nucleótido Simple/genética , Sitios Genéticos
7.
Cerebellum ; 22(3): 355-362, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35441258

RESUMEN

Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant cerebellar ataxia accompanied by extracerebellar signs and other neurological disorders. It is caused by an expansion of the ATTCT pentanucleotide repeat in intron 9 of ATXN10. Cases of SCA10, formerly confined to America, have been reported in Europe and Asia. In the present study, we aim to report an atypical SCA10 family in China and provide a reference for the diagnosis of SCA10 in Asia by comparing their clinical and genetic features with former SCA10 pedigrees. Genomic DNA was extracted from patients and subjected to RP-PCR (repeat-primed PCR), Southern blotting, and haplotype analysis to determine the genetic pathogenesis. Patients with SCA10 in this pedigree demonstrated atypical SCA10 manifestations, including the absence of seizures and ocular abnormalities. Magnetic resonance imaging (MRI) showed cerebellar atrophy in five patients with available data. RP-PCR and Southern blotting revealed abnormal expansion. Analysis of single nucleotide polymorphisms (SNPs) surrounding the SCA10 locus in the proband and other affected family members revealed the "C-expansion-G-G-C" haplotype, consistent with former studies. These findings imply that the SCA10 mutation may have occurred before the Amerindian migration from East Asia to North America. It also suggested that SCA10 should be taken into account during differential diagnosis in patients of Asian ancestry, even if they do not present with typical features such as epilepsy.


Asunto(s)
Pueblos del Este de Asia , Ataxias Espinocerebelosas , Humanos , Expansión de las Repeticiones de ADN , Mutación , Ataxias Espinocerebelosas/genética
8.
Macromol Rapid Commun ; 44(23): e2300381, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37798917

RESUMEN

The optoelectronic properties and photovoltaic performance of nonfullerene electron acceptors (NFEAs) in organic solar cells (OSCs) are greatly influenced by the rational structure regulation of the central core unit. This study introduces a novel type of six-membered fused electron-donating core containing B─N covalent bonds to construct acceptor-donor-acceptor (A-D-A)-type NFEAs. By modulating the branching alkyl chains on the nitrogen atom, two NFEAs, BN910 and BN1014, are synthesized and characterized. Both molecules exhibit strong near-infrared absorption, narrow bandgaps (≈1.45 eV), appropriate energy levels, and tunable molecular packing behaviors, positioning them as promising candidates for efficient NFEAs in OSCs. The investigation reveals that BN1014, with longer and C2-branched alkyl chains, demonstrates superior intermolecular packing and morphology within active layers, leading to enhanced exciton dissociation, improved charge transfer, and reduced charge recombination in OSCs. As a result, a power conversion efficiency (PCE) of 10.02% is achieved for D18:BN1014-based binary OSCs. Notably, BN1014 can be utilized as the third component in the D18:DT-Y6 binary system to fabricate the ternary OSCs, and a PCE of 17.65% is achieved, outperforming 17.05% of D18:DT-Y6-based binary OSCs. These findings highlight the potential of heteroarenes featuring B─N covalent bonds for constructing high-efficiency NFEAs in OSCs.


Asunto(s)
Vendajes , Electrones , Nitrógeno , Oxidantes
9.
J Headache Pain ; 24(1): 111, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592229

RESUMEN

BACKGROUND: While previous genome-wide association studies (GWAS) have identified multiple risk variants for migraine, there is a lack of evidence about how these variants contribute to the development of migraine. We employed an integrative pipeline to efficiently transform genetic associations to identify causal genes for migraine. METHODS: We conducted a proteome-wide association study (PWAS) by combining data from the migraine GWAS data with proteomic data from the human brain and plasma to identify proteins that may play a role in the risk of developing migraine. We also combined data from GWAS of migraine with a novel joint-tissue imputation (JTI) prediction model of 17 migraine-related human tissues to conduct transcriptome-wide association studies (TWAS) together with the fine mapping method FOCUS to identify disease-associated genes. RESULTS: We identified 13 genes in the human brain and plasma proteome that modulate migraine risk by regulating protein abundance. In addition, 62 associated genes not reported in previous migraine TWAS studies were identified by our analysis of migraine using TWAS and fine mapping. Five genes including ICA1L, TREX1, STAT6, UFL1, and B3GNT8 showed significant associations with migraine at both the proteome and transcriptome, these genes are mainly expressed in ependymal cells, neurons, and glial cells, and are potential target genes for prevention of neuronal signaling and inflammatory responses in the pathogenesis of migraine. CONCLUSIONS: Our proteomic and transcriptome findings have identified disease-associated genes that may give new insights into the pathogenesis and potential therapeutic targets for migraine.


Asunto(s)
Trastornos Migrañosos , Proteoma , Humanos , Proteoma/genética , Estudio de Asociación del Genoma Completo , Proteómica , Transcriptoma , Trastornos Migrañosos/genética
10.
Ann Neurol ; 89(1): 182-187, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33016348

RESUMEN

NOTCH2NLC GGC repeat expansions were recently identified in neuronal intranuclear inclusion disease (NIID); however, it remains unclear whether they occur in other neurodegenerative disorders. This study aimed to investigate the role of intermediate-length NOTCH2NLC GGC repeat expansions in Parkinson disease (PD). We screened for GGC repeat expansions in a cohort of 1,011 PD patients and identified 11 patients with intermediate-length repeat expansions ranging from 41 to 52 repeats, with no repeat expansions in 1,134 controls. Skin biopsy revealed phospho-alpha-synuclein deposition, confirming the PD diagnosis in 2 patients harboring intermediate-length repeat expansions instead of NIID or essential tremor. Fibroblasts from PD patients harboring intermediate-length repeat expansions revealed NOTCH2NLC upregulation and autophagic dysfunction. Our results suggest that intermediate-length repeat expansions in NOTCH2NLC are potentially associated with PD. ANN NEUROL 2021;89:182-187.


Asunto(s)
Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Adulto , Anciano , Biopsia , Encéfalo/patología , Estudios de Cohortes , Femenino , Humanos , Cuerpos de Inclusión Intranucleares/metabolismo , Cuerpos de Inclusión Intranucleares/patología , Masculino , Persona de Mediana Edad , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/metabolismo , Linaje , Receptor Notch2/metabolismo
11.
Neurochem Res ; 46(6): 1337-1349, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33594583

RESUMEN

Intracerebral hemorrhage (ICH) is the second largest type of stroke, with high mortality and morbidity, and most patients have severe sequelae. Brain injury induced by ICH includes primary damage and secondary damage, and the secondary brain injury is the main reason of neurological impairment. The hallmark of secondary brain injury is cell death. Necroptosis is a type of the cell death and plays vital roles in various neurological diseases, but the roles of necroptosis in ICH are still not fully known. Microglia cell is the type of immune cell, plays protective roles in nerve damage and modulates the activity of neurons through secreting exosomes. Exosome-contained miRNAs are also involved in the regulating neuronal activity. However, the roles and the mechanisms of microglia-secreted exosomes miRNAs in ICH neurons necroptosis need to further explore. In this study, ICH model was construct in rats and cells. Injury of cells in brain was detected by PI staining. Necroptosis in rats and cells was detected by western blot and flow cytometry. The expression of miR-383-3p was detected by RT-qPCR. The roles of activated microglia-secreted exosomes and exosome-contained miR-383-3p were detected through co-culturing medium or exosomes with neurons. The target gene of miR-383-3p was determined by luciferase assay and the expression of target gene was detected by western blot. Rescue experiments were used to confirm the mechanism of miR-383-3p in neurons necroptosis. The miR-383-3p role was verified in vivo through injecting miR-383-3p mimic into ICH rats. Here, we found that the necroptosis of neurons was increased in ICH rats through detecting the expression of RIP1 and RIP3 and PI staining. Microglia that activated by ICH promote neurons necroptosis through secreting exosomes and transferring miR-383-3p into neurons. In mechanism, miR-383-3p negatively regulated the expression of ATF4 and then promoted the necroptosis of neurons. Overall, our results provide a novel molecular basis to neurons necroptosis in ICH and may provide a new strategy to retard the secondary brain injury of ICH.


Asunto(s)
Factor de Transcripción Activador 4/antagonistas & inhibidores , Hemorragia Cerebral/fisiopatología , Exosomas/metabolismo , MicroARNs/metabolismo , Microglía/metabolismo , Necroptosis/fisiología , Animales , Células Cultivadas , Técnicas de Cocultivo , Masculino , Neuronas/metabolismo , Ratas Sprague-Dawley
12.
PLoS Genet ; 14(9): e1007664, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30222779

RESUMEN

CHIP (carboxyl terminus of heat shock 70-interacting protein) has long been recognized as an active member of the cellular protein quality control system given the ability of CHIP to function as both a co-chaperone and ubiquitin ligase. We discovered a genetic disease, now known as spinocerebellar autosomal recessive 16 (SCAR16), resulting from a coding mutation that caused a loss of CHIP ubiquitin ligase function. The initial mutation describing SCAR16 was a missense mutation in the ubiquitin ligase domain of CHIP (p.T246M). Using multiple biophysical and cellular approaches, we demonstrated that T246M mutation results in structural disorganization and misfolding of the CHIP U-box domain, promoting oligomerization, and increased proteasome-dependent turnover. CHIP-T246M has no ligase activity, but maintains interactions with chaperones and chaperone-related functions. To establish preclinical models of SCAR16, we engineered T246M at the endogenous locus in both mice and rats. Animals homozygous for T246M had both cognitive and motor cerebellar dysfunction distinct from those observed in the CHIP null animal model, as well as deficits in learning and memory, reflective of the cognitive deficits reported in SCAR16 patients. We conclude that the T246M mutation is not equivalent to the total loss of CHIP, supporting the concept that disease-causing CHIP mutations have different biophysical and functional repercussions on CHIP function that may directly correlate to the spectrum of clinical phenotypes observed in SCAR16 patients. Our findings both further expand our basic understanding of CHIP biology and provide meaningful mechanistic insight underlying the molecular drivers of SCAR16 disease pathology, which may be used to inform the development of novel therapeutics for this devastating disease.


Asunto(s)
Cognición , Actividad Motora/genética , Dominios Proteicos/genética , Ataxias Espinocerebelosas/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Conducta Animal , Sistemas CRISPR-Cas/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fenotipo , Mutación Puntual , Multimerización de Proteína/genética , Ratas , Ratas Sprague-Dawley , Ataxias Espinocerebelosas/congénito , Ubiquitina-Proteína Ligasas/metabolismo
14.
Nat Prod Res ; : 1-8, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635418

RESUMEN

This study aimed to investigate the effects of SSa, one of the major triterpenoid saponins extracted from Radix bupleuri, on neutrophil extracellular trap (NET) formation and the mechanism associated with this process. Using Sytox green and immunofluorescence assays, we found SSa rapidly induced NET formation, which depended on NADPH oxidase (NOX)-independent ROS production and autophagy. Pharmacologic inhibitor studies indicated that ERK and PI3K/AKT signalling were also required for SSa-induced NET formation, whereas protein arginine deiminase 4 (PAD4) was not required. Furthermore, we found that SSa promoted neutrophil bactericidal activity mainly through NET formation. Based on flow cytometry and the Cell Counting Kit-8 (CCK-8) assays, the results demonstrated that SSa-induced NET formation occurred without neutrophil death. Taken together, these findings indicated that SSa could be a potential natural product to boost innate immune defense against pathogen attack via NET formation.

15.
Front Aging Neurosci ; 16: 1403077, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903900

RESUMEN

Introduction: Alzheimer's disease (AD) is the most widespread neurodegenerative disease in the world. Previous studies have shown that peripheral immune dysregulation plays a paramount role in AD, but whether there is a protective causal relationship between peripheral immunophenotypes and AD risk remains ambiguous. Methods: Two-sample Mendelian randomization (MR) was performed using large genome-wide association study (GWAS) genetic data to assess causal effects between peripheral immunophenotypes and AD risk. Utilizing the genetic associations of 731 immune cell traits as exposures. We adopted the inverse variance weighted method as the primary approach. The Weighted median and MR-Egger regression methods were employed as supplements. Various sensitivity analyses were performed to assess the robustness of the outcomes. Results: Based on the IVW method, we identified 14 immune cell traits that significantly reduced the risk of AD, of which six demonstrated statistical significance in both IVW and Weighted median methods. Among the seven immune traits, four were related to regulatory T (Treg) cells : (1) CD25++ CD45RA- CD4 not regulatory T cell % T cell (odds ratio (OR) [95% confidence interval (CI)] = 0.96 [0.95, 0.98], adjusted P = 1.17E-02), (2) CD25++ CD45RA- CD4 not regulatory T cell % CD4+ T cell (OR [95% CI] = 0.97 [0.96, 0.99], adjusted P = 3.77E-02), (3) Secreting CD4 regulatory T cell % CD4 regulatory T cell (OR [95% CI] = 0.98 [0.97, 0.99], adjusted P = 7.10E-03), (4) Activated & secreting CD4 regulatory T cell % CD4 regulatory T cell(OR [95% CI] = 0.98 [0.97, 0.99], adjusted P = 7.10E-03). In addition, HLA DR++ monocyte % monocyte (OR [95% CI] = 0.93 [0.89, 0.98], adjusted P = 4.87E-02) was associated with monocytes, and HLA DR on myeloid Dendritic Cell (OR [95% CI] = 0.93 [0.89, 0.97], adjusted P = 1.17E-02) was related to dendritic cells (DCs). Conclusion: These findings enhance the comprehension of the protective role of peripheral immunity in AD and provide further support for Treg and monocyte as potential targets for immunotherapy in AD.

16.
Adv Mater ; : e2406950, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152933

RESUMEN

The performance of organic photodetectors (OPDs) sensitive to the short-wavelength infrared (SWIR) light lags behind commercial indium gallium arsenide (InGaAs) photodetectors primarily due to the scarcity of organic semiconductors with efficient photoelectric responses exceeding 1.3 µm. Limited by the Energy-gap law, ultralow-bandgap organic semiconductors usually suffer from severe non-radiative transitions, resulting in low external quantum efficiency (EQE). Herein, a difluoro-substituted quinoid terminal group (QC-2F) with exceptionally strong electron-negativity is developed for constructing a new non-fullerene acceptor (NFA), Y-QC4F with an ultralow bandgap of 0.83 eV. This subtle structural modification significantly enhances intermolecular packing order and density, enabling an absorption onset up to 1.5 µm while suppressing non-radiation recombination in Y-QC4F films. SWIR OPDs based on Y-QC4F achieve an impressive detectivity (D*) over 1011 Jones from 0.4 to 1.5 µm under 0 V bias, with a maximum of 1.68 × 1012 Jones at 1.16 µm. Furthermore, the resulting OPDs demonstrate competitive performance with commercial photodetectors for high-quality SWIR imaging even under 1.4 µm irradiation.

17.
Aging (Albany NY) ; 16(2): 1555-1580, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38240717

RESUMEN

Genome-wide association studies (GWAS) have identified multiple risk variants for Parkinson's disease (PD). Nevertheless, how the risk variants confer the risk of PD remains largely unknown. We conducted a proteome-wide association study (PWAS) and summary-data-based mendelian randomization (SMR) analysis by integrating PD GWAS with proteome and protein quantitative trait loci (pQTL) data from human brain, plasma and CSF. We also performed a large transcriptome-wide association study (TWAS) and Fine-mapping of causal gene sets (FOCUS), leveraging joint-tissue imputation (JTI) prediction models of 22 tissues to identify and prioritize putatively causal genes. We further conducted PWAS, SMR, TWAS, and FOCUS using a multi-trait analysis of GWAS (MTAG) to identify additional PD risk genes to boost statistical power. In this large-scale study, we identified 16 genes whose genetically regulated protein abundance levels were associated with Parkinson's disease risk. We undertook a large-scale analysis of PD and correlated traits, through TWAS and FOCUS studies, and discovered 26 casual genes related to PD that had not been reported in previous TWAS. 5 genes (CD38, GPNMB, RAB29, TMEM175, TTC19) showed significant associations with PD at both the proteome-wide and transcriptome-wide levels. Our study provides new insights into the etiology and underlying genetic architecture of PD.


Asunto(s)
Enfermedad de Parkinson , Transcriptoma , Humanos , Estudio de Asociación del Genoma Completo , Proteoma/genética , Predisposición Genética a la Enfermedad , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple , Glicoproteínas de Membrana/genética
18.
NPJ Parkinsons Dis ; 10(1): 70, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548756

RESUMEN

This study aimed to investigate the association between irritable bowel syndrome (IBS) and Parkinson's disease (PD) utilizing prospective cohort study and Mendelian randomization. The dataset contained a substantial cohort of 426,911 participants from the UK Biobank, discussing the association between IBS and PD with Cox proportional hazards models and case-control analysis while adjusting for covariates such as age, gender, ethnicity and education level. In univariate Cox regression model, the risk of PD was reduced in IBS patients (HR: 0.774, 95%CI: 0.625-0.956, P = 0.017), but the statistical significance diminished in the three models after adjusting for other variables. In a few subgroup analyses, IBS patients are less likely to develop into PD, and patients diagnosed with IBS after 2000 also had a lower risk (HR: 0.633, 95%CI: 0.403-0.994, P = 0.047) of subsequently developing PD. In addition, we matched five healthy control participants based on gender and age at the end of the study for each IBS patient diagnosed during the follow-up period, and logistic regression results (OR:1.239, 95%CI: 0.896-1.680, P = 0.181) showed that IBS was not associated with the risk of PD. Mendelian randomization did not find significant evidence of the causal relationship between IBS and Parkinson's disease (OR: 0.801, 95%CI: 0.570-1.278, P = 0.204). Overall, we suggest that IBS status is not associated with the risk of developing PD, and that these findings provide valuable insights into the clinical management and resource allocation of patients with IBS.

19.
Front Neurosci ; 17: 1269354, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188028

RESUMEN

Introduction: The peripheral immune system changes in amyotrophic lateral sclerosis (ALS), but the causal relationship between the two is still controversial. Methods: In this study, we aimed to estimate the causal relationship between peripheral immune markers and ALS using a two-sample Mendelian randomization method. Genome-wide association study (GWAS) data on peripheral blood immune traits from European populations were used for exposure, and ALS summary statistics were used as the outcome. The causal relationship was evaluated by inverse variance weighting, MR-Egger, and weighted median methods and verified by multiple sensitivity analysis. Results: We found that the increase of one standard deviation of lymphocyte count is related to reducing ALS risk. CD3 on effector memory CD4+ T cell, HLA DR+ CD4+ T cell, effector memory CD8+ T cell, terminally differentiated CD8+ T cell and CD28- CD8+ T cell is also a protective factor for ALS. Among the circulating immune protein, the increase of one standard deviation of α-2-macroglobulin receptor-associated protein (α-2-MRAP) and C4b showed associated with low risk of ALS, while Interleukin-21 (IL-21) increases the risk of ALS. Discussion: Our study further reveals the important role of peripheral immune activity in ALS.

20.
Gene Expr Patterns ; 47: 119305, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36682427

RESUMEN

Neuronal defect and loss are the main pathological processes of many central nervous system diseases. Cellular reprogramming is a promising method to supplement lost neurons. However, study on cellular reprogramming is still limited and its mechanism remains unclear. Herein, the effect of Neurod1 expression on differentiation of NG2 glia into neurons was investigated. In this study, we successfully isolated NG2 glial cells from mice prior to identification with immunofluorescence. Afterwards, AAV-Neurod1 virus was used to construct Neurod1 overexpression vectors in NG2 glia. Later, we detected neuronal markers expression with immunofluorescence and real time quantitative polymerase-chain reaction (qRT-PCR). Besides, expression of MAPK-signaling-pathway-related proteins were detected by western blotting technique. Through immunofluorescence and qRT-PCR techniques, we observed that Neurod1 overexpression contributed to NG2 cells differentiated into neurons. Further experiments also showed that Neurod1 overexpression induced the activation of MAPK pathway, but PD98059 (a selective inhibitor of MAPK pathway) partly inhibited the neuronal differentiation induced by Neurod1 overexpression. These findings suggest that Neurod1 could promote NG2 glia cells differentiating into neurons, wherein the mechanism under the differentiation is related to activation of MAPK pathway.


Asunto(s)
Neuroglía , Neuronas , Ratones , Animales , Neuroglía/metabolismo , Neuronas/metabolismo , Diferenciación Celular , Reprogramación Celular , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA