Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Plant J ; 119(1): 115-136, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38573794

RESUMEN

Salinity is frequently mentioned as a major constraint in worldwide agricultural production. Lint percentage (LP) is a crucial yield-component in cotton lint production. While the genetic factors affect cotton yield in saline soils are still unclear. Here, we employed a recombinant inbred line population in upland cotton (Gossypium hirsutum L.) and investigated the effects of salt stress on five yield and yield component traits, including seed cotton yield per plant, lint yield per plant, boll number per plant, boll weight, and LP. Between three datasets of salt stress (E1), normal growth (E2), and the difference values dataset of salt stress and normal conditions (D-value), 87, 82, and 55 quantitative trait loci (QTL) were detectable, respectively. In total, five QTL (qLY-Chr6-2, qBNP-Chr4-1, qBNP-Chr12-1, qBNP-Chr15-5, qLP-Chr19-2) detected in both in E1 and D-value were salt related QTL, and three stable QTL (qLP-Chr5-3, qLP-Chr13-1, qBW-Chr5-5) were detected both in E1 and E2 across 3 years. Silencing of nine genes within a stable QTL (qLP-Chr5-3) highly expressed in fiber developmental stages increased LP and decreased fiber length (FL), indicating that multiple minor-effect genes clustered on Chromosome 5 regulate LP and FL. Additionally, the difference in LP caused by Gh_A05G3226 is mainly in transcription level rather than in the sequence difference. Moreover, silencing of salt related gene (GhDAAT) within qBNP-Chr4-1 decreased salt tolerance in cotton. Our findings shed light on the regulatory mechanisms underlining cotton salt tolerance and fiber initiation.


Asunto(s)
Gossypium , Sitios de Carácter Cuantitativo , Estrés Salino , Gossypium/genética , Gossypium/fisiología , Sitios de Carácter Cuantitativo/genética , Estrés Salino/genética , Mapeo Cromosómico , Fibra de Algodón , Fenotipo
2.
Plant J ; 112(1): 68-83, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35912411

RESUMEN

Heterosis refers to the superior performance of hybrids over their parents, which is a general phenomenon occurring in diverse organisms. Many commercial hybrids produce high yield without delayed flowering, which we refer to as optimal heterosis and is desired in hybrid breeding. Here, we attempted to illustrate the genomic basis of optimal heterosis by reinvestigating the single-locus quantitative trait loci and digenic interactions of two traits, the number of spikelets per panicle (SP) and heading date (HD), using recombinant inbred lines and 'immortalized F2 s' derived from the elite rice (Oryza sativa) hybrid Shanyou 63. Our analysis revealed a regulatory network that may provide an approximation to the genetic constitution of the optimal heterosis observed in this hybrid. In this network, Ghd7 works as the core element, and three other genes, Ghd7.1, Hd1, and Hd3a/RFT1, also have major roles. The effects of positive dominance by Ghd7 and Ghd7.1 and negative dominance by Hd1 and Hd3a/RFT1 in the hybrid background contribute the major part to the high SP without delaying HD; numerous epistatic interactions, most of which involve Ghd7, also play important roles collectively. The results expand our understanding of the genic interaction networks underlying hybrid rice breeding programs, which may be very useful in future crop genetic improvement.


Asunto(s)
Vigor Híbrido , Oryza , Vigor Híbrido/genética , Oryza/genética , Fenotipo , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética
3.
BMC Plant Biol ; 23(1): 175, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016285

RESUMEN

BACKGROUND: The utilization of heterosis based on three-line system is an effective strategy in crop breeding. However, cloning and mechanism elucidation of restorer genes for cytoplasmic male sterility (CMS) in upland cotton have yet been realized. RESULTS: This research is based on CMS line 2074A with the cytoplasm from Gossypium harknessii (D2-2) and restorer line R186. The offspring of 2074A × R186 were used to conduct genetic analysis. The fertility mechanism of 2074A can be speculated to be governed by multiple genes, since neither the single gene model nor the double genes model could be used. The bulked segregant analysis (BSA) for (2074A × R186) F2 determined the genetic interval of restorer genes on a region of 4.30 Mb on chromosome D05 that contains 77 annotated genes. Four genes were identified as candidates for fertility restoration using the RNA-seq data of 2074A, 2074B, and R186. There are a number of large effect variants in the four genes between 2074A and R186 that could cause amino acid changes. Evolutionary analysis and identity analysis revealed that GH_D05G3183, GH_D05G3384, and GH_D05G3490 have high identity with their homologs in D2-2, respectively. Tissue differential expression analysis revealed that the genes GH_D05G3183, GH_D05G3384, and GH_D05G3490 were highly expressed in the buds of the line R186. The predicted results demonstrated that GH_D05G3183, GH_D05G3384 and GH_D05G3490 might interact with GH_A02G1295 to regulate orf610a in mitochondria. CONCLUSION: Our study uncovered candidate genes for fertility restoration in the restorer line R186 and predicted the possible mechanism for restoring the male fertility in 2074A. This research provided valuable insight into the nucleoplasmic interactions.


Asunto(s)
Gossypium , Fitomejoramiento , Gossypium/fisiología , Fertilidad/genética , Citoplasma/metabolismo , Citosol , Infertilidad Vegetal/genética
4.
Plant Biotechnol J ; 20(4): 691-710, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34800075

RESUMEN

Sea Island cotton (Gossypium barbadense) is the source of the world's finest fibre quality cotton, yet relatively little is understood about genetic variations among diverse germplasms, genes underlying important traits and the effects of pedigree selection. Here, we resequenced 336 G. barbadense accessions and identified 16 million SNPs. Phylogenetic and population structure analyses revealed two major gene pools and a third admixed subgroup derived from geographical dissemination and interbreeding. We conducted a genome-wide association study (GWAS) of 15 traits including fibre quality, yield, disease resistance, maturity and plant architecture. The highest number of associated loci was for fibre quality, followed by disease resistance and yield. Using gene expression analyses and VIGS transgenic experiments, we confirmed the roles of five candidate genes regulating four key traits, that is disease resistance, fibre length, fibre strength and lint percentage. Geographical and temporal considerations demonstrated selection for the superior fibre quality (fibre length and fibre strength), and high lint percentage in improving G. barbadense in China. Pedigree selection breeding increased Fusarium wilt disease resistance and separately improved fibre quality and yield. Our work provides a foundation for understanding genomic variation and selective breeding of Sea Island cotton.


Asunto(s)
Fusarium , Gossypium , Mapeo Cromosómico , Fibra de Algodón , Resistencia a la Enfermedad/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Gossypium/genética , Fenotipo , Filogenia , Fitomejoramiento , Sitios de Carácter Cuantitativo
5.
Theor Appl Genet ; 134(2): 661-685, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33386428

RESUMEN

KEY MESSAGE: QTL for fiber quality traits under salt stress discerned candidate genes controlling fatty acid metabolism. Salinity stress seriously affects plant growth and limits agricultural productivity of crop plants. To dissect the genetic basis of response to salinity stress, a recombinant inbred line population was developed to compare fiber quality in upland cotton (Gossypium hirsutum L.) under salt stress and normal conditions. Based on three datasets of (1) salt stress, (2) normal growth, and (3) the difference value between salt stress and normal conditions, 51, 70, and 53 QTL were mapped, respectively. Three QTL for fiber length (FL) (qFL-Chr1-1, qFL-Chr5-5, and qFL-Chr24-4) were detected under both salt and normal conditions and explained 4.26%, 9.38%, and 3.87% of average phenotypic variation, respectively. Seven genes within intervals of two stable QTL (qFL-Chr1-1 and qFL-Chr5-5) were highly expressed in lines with extreme long fiber. A total of 35 QTL clusters comprised of 107 QTL were located on 18 chromosomes and exhibited pleiotropic effects. Thereinto, two clusters were responsible for improving five fiber quality traits, and 6 influenced FL and fiber strength (FS). The QTL with positive effect for fiber length exhibited active effects on fatty acid synthesis and elongation, but the ones with negative effect played passive roles on fatty acid degradation under salt stress.


Asunto(s)
Cromosomas de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Gossypium/crecimiento & desarrollo , Gossypium/genética , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo , Estrés Salino , Animales , Mapeo Cromosómico , Fenotipo , Proteínas de Plantas/genética , Polimorfismo Genético
6.
BMC Plant Biol ; 20(1): 421, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928106

RESUMEN

BACKGROUND: Salt stress is one of the most damaging abiotic stresses in production of Upland cotton (Gossypium hirsutum). Upland cotton is defined as a medium salt-tolerant crop. Salinity hinders root development, shoots growth, and reduces the fiber quality. RESULTS: Our previous study verified a GhCIPK6a gene response to salt stress in G. hirsutum. The homologs of GhCIPK6a were analyzed in A2 (G. arboreum), D5 (G. raimondii), and AD1 (G. hirsutum) genomes. GhCIPK6a localized to the vacuole and cell membrane. The GhCBL1-GhCIPK6a and GhCBL8-GhCIPK6a complexes localized to the nucleus and cytomembrane. Overexpression of GhCIPK6a enhanced expression levels of co-expressed genes induced by salt stress, which scavenged ROS and involved in MAPK signaling pathways verified by RNA-seq analysis. Water absorption capacity and cell membrane stability of seeds from GhCIPK6a overexpressed lines was higher than that of wild-type seeds during imbibed germination stage. The seed germination rates and seedling field emergence percentages of GhCIPK6a overexpressed lines were higher than that of control line under salt stress. Moreover, overexpressing of GhCIPK6a in cotton increased lint percentage, and fiber length uniformity under salt stress. CONCLUSIONS: We verified the function of GhCIPK6a by transformation and RNA-seq analysis. GhCIPK6a overexpressed lines exhibited higher tolerance to abiotic stresses, which functioned by involving in ROS scavenging and MAPK pathways. Therefore, GhCIPK6a has the potential for cotton breeding to improve stress-tolerance.


Asunto(s)
Productos Agrícolas/genética , Genes de Plantas , Gossypium/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Tolerancia a la Sal/genética , Transducción de Señal/genética , Depuradores de Radicales Libres/metabolismo , Regulación de la Expresión Génica de las Plantas , Especies Reactivas de Oxígeno/metabolismo , Salinidad , Análisis de Secuencia de ADN
7.
Plant Biotechnol J ; 18(1): 239-253, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31199554

RESUMEN

Cotton is widely cultivated globally because it provides natural fibre for the textile industry and human use. To identify quantitative trait loci (QTLs)/genes associated with fibre quality and yield, a recombinant inbred line (RIL) population was developed in upland cotton. A consensus map covering the whole genome was constructed with three types of markers (8295 markers, 5197.17 centimorgans (cM)). Six fibre yield and quality traits were evaluated in 17 environments, and 983 QTLs were identified, 198 of which were stable and mainly distributed on chromosomes 4, 6, 7, 13, 21 and 25. Thirty-seven QTL clusters were identified, in which 92.8% of paired traits with significant medium or high positive correlations had the same QTL additive effect directions, and all of the paired traits with significant medium or high negative correlations had opposite additive effect directions. In total, 1297 genes were discovered in the QTL clusters, 414 of which were expressed in two RNA-Seq data sets. Many genes were discovered, 23 of which were promising candidates. Six important QTL clusters that included both fibre quality and yield traits were identified with opposite additive effect directions, and those on chromosome 13 (qClu-chr13-2) could increase fibre quality but reduce yield; this result was validated in a natural population using three markers. These data could provide information about the genetic basis of cotton fibre quality and yield and help cotton breeders to improve fibre quality and yield simultaneously.


Asunto(s)
Fibra de Algodón , Gossypium/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Marcadores Genéticos , Fenotipo , Fitomejoramiento , RNA-Seq
8.
BMC Plant Biol ; 19(1): 492, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718541

RESUMEN

BACKGROUND: Intergenomic gene transfer (IGT) between nuclear and organellar genomes is a common phenomenon during plant evolution. Gossypium is a useful model to evaluate the genomic consequences of IGT for both diploid and polyploid species. Here, we explore IGT among nuclear, mitochondrial, and plastid genomes of four cotton species, including two allopolyploids and their model diploid progenitors (genome donors, G. arboreum: A2 and G. raimondii: D5). RESULTS: Extensive IGT events exist for both diploid and allotetraploid cotton (Gossypium) species, with the nuclear genome being the predominant recipient of transferred DNA followed by the mitochondrial genome. The nuclear genome has integrated 100 times more foreign sequences than the mitochondrial genome has in total length. In the nucleus, the integrated length of chloroplast DNA (cpDNA) was between 1.87 times (in diploids) to nearly four times (in allopolyploids) greater than that of mitochondrial DNA (mtDNA). In the mitochondrion, the length of nuclear DNA (nuDNA) was typically three times than that of cpDNA. Gossypium mitochondrial genomes integrated three nuclear retrotransposons and eight chloroplast tRNA genes, and incorporated chloroplast DNA prior to divergence between the diploids and allopolyploid formation. For mitochondrial chloroplast-tRNA genes, there were 2-6 bp conserved microhomologies flanking their insertion sites across distantly related genera, which increased to 10 bp microhomologies for the four cotton species studied. For organellar DNA sequences, there are source hotspots, e.g., the atp6-trnW intergenic region in the mitochondrion and the inverted repeat region in the chloroplast. Organellar DNAs in the nucleus were rarely expressed, and at low levels. Surprisingly, there was asymmetry in the survivorship of ancestral insertions following allopolyploidy, with most numts (nuclear mitochondrial insertions) decaying or being lost whereas most nupts (nuclear plastidial insertions) were retained. CONCLUSIONS: This study characterized and compared intracellular transfer among nuclear and organellar genomes within two cultivated allopolyploids and their ancestral diploid cotton species. A striking asymmetry in the fate of IGTs in allopolyploid cotton was discovered, with numts being preferentially lost relative to nupts. Our results connect intergenomic gene transfer with allotetraploidy and provide new insight into intracellular genome evolution.


Asunto(s)
ADN de Plantas , Genoma de Planta , Gossypium/genética , Recombinación Genética , Núcleo Celular/genética , Diploidia , Evolución Molecular , Genoma del Cloroplasto , Genoma Mitocondrial , Genoma de Plastidios , Tetraploidía
9.
Physiol Plant ; 167(2): 217-231, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30467856

RESUMEN

Ammonium (NH4 + ) represents a primary nitrogen source for many plants, its effective transport into and between tissues and further assimilation in cells determine greatly plant nitrogen use efficiency. However, biological components involved in NH4 + movement in woody plants are unclear. Here, we report kinetic evidence for cotton NH4 + uptake and molecular identification of certain NH4 + transporters (AMTs) from cotton (Gossypium hirustum). A substrate-influx assay using 15 N-isotope revealed that cotton possessed a high-affinity transport system with a Km of 58 µM for NH4 + . Sequence analysis showed that GhAMT1.1-1.3 encoded respectively a membrane protein containing 485, 509 or 499 amino acids. Heterologous functionality test demonstrated that GhAMT1.1-1.3 expression mediated NH4 + permeation across the plasma membrane (PM) of yeast and/or Arabidopsis qko-mutant cells, allowing a growth restoration of both mutants on NH4 + . Quantitative PCR measurement showed that GhAMT1.3 was expressed in roots and leaves and markedly up-regulated by N-starvation, repressed by NH4 + resupply and regulated diurnally and age-dependently, suggesting that GhAMT1.3 should be a N-responsive gene. Importantly, GhAMT1.3 expression in Arabidopsis improved plant growth on NH4 + and enhanced total nitrogen accumulation (∼50% more), conforming with the observation of 2-fold more NH4 + absorption by GhAMT1.3-transformed qko plant roots during a 1-h root influx period. Together with its targeting to the PM and saturated transport kinetics with a Km of 72 µM for NH4 + , GhAMT1.3 is suggested to be a high-affinity NH4 + permease that may play a significant role in cotton NH4 + acquisition and utilization, adding a new member in the plant AMT family.


Asunto(s)
Compuestos de Amonio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Gossypium/genética , Nitrógeno/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte de Catión/genética , Membrana Celular/metabolismo , Gossypium/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
Physiol Plant ; 167(3): 447-464, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30629305

RESUMEN

We identified 102, 51 and 51 proteins encoded by the trihelix genes in Gossypium hirsutum, Gossypium arboreum and Gossypium raimondii, respectively. RNA sequence data and real-time quantitative polymerase chain reaction analysis showed that Gh_A05G2067 (GT-2) was highly upregulated under drought and salt stress conditions. Transient expression of GT-2-green fluorescent protein fusion protein in protoplast showed that GT-2 was localized in the nucleus. The overexpression of GT-2 conferred an enhanced drought tolerance to cotton, with lower malondialdehyde, hydrogen peroxide contents and higher reactive oxygen scavenging enzyme activities. Moreover, chlorophyll content, relative leaf water content (RLWC), excised leaf water loss (ELWL) and cell membrane stability (CMS) were relatively stable in the GT-2-overexpressed lines compared to wild-type (WT). Similarly, stress-responsive genes RD29A, SOS1, ABF4 and CBL1 were highly upregulated in the GT-2-overexpressed lines but were significantly downregulated in WT. In addition, the GT-2-silenced cotton plants exhibited a high level of oxidation injury, due to high levels of oxidant enzymes, in addition to negative effects on CMS, ELWL, RLWC and chlorophyll content. These results mark the foundation for future exploration of the trihelix genes in cotton, with an aim of developing more resilient, versatile and highly tolerant cotton genotypes.


Asunto(s)
Sequías , Gossypium/metabolismo , Hojas de la Planta/metabolismo , Gossypium/efectos de los fármacos , Gossypium/fisiología , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/metabolismo , Tolerancia a la Sal , Cloruro de Sodio/farmacología , Factores de Transcripción/metabolismo
11.
BMC Genomics ; 19(1): 775, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30367630

RESUMEN

BACKGROUND: The mitochondrial genomes of higher plants vary remarkably in size, structure and sequence content, as demonstrated by the accumulation and activity of repetitive DNA sequences. Incompatibility between mitochondrial genome and nuclear genome leads to non-functional male reproductive organs and results in cytoplasmic male sterility (CMS). CMS has been used to produce F1 hybrid seeds in a variety of plant species. RESULTS: Here we compared the mitochondrial genomes (mitogenomes) of Gossypium hirsutum sterile male lines CMS-2074A and CMS-2074S, as well as their restorer and maintainer lines. First, we noticed the mitogenome organization and sequences were conserved in these lines. Second, we discovered the mitogenomes of 2074A and 2074S underwent large-scale substitutions and rearrangements. Actually, there were five and six unique chimeric open reading frames (ORFs) in 2074A and 2074S, respectively, which were derived from the recombination between unique repetitive sequences and nearby functional genes. Third, we found out four chimeric ORFs that were differentially transcribed in sterile line (2074A) and fertile-restored line. CONCLUSIONS: These four novel and recombinant ORFs are potential candidates that confer CMS character in 2074A. In addition, our observations suggest that CMS in cotton is associated with the accelerated rates of rearrangement, and that novel expression products are derived from recombinant ORFs.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma Mitocondrial , Gossypium/genética , Infertilidad Vegetal/genética , Biología Computacional/métodos , Curaduría de Datos , Evolución Molecular , Perfilación de la Expresión Génica , Biblioteca de Genes , Genes Mitocondriales , Genoma de Planta , Genómica/métodos , Transcriptoma
12.
Funct Integr Genomics ; 18(4): 457-476, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29626311

RESUMEN

Cytoplasmic male sterility (CMS) lines provide crucial material to harness heterosis for crop plants, which serves as an important strategy for hybrid seed production. However, the molecular mechanism remains obscure. Although microRNAs (miRNAs) play important roles in vegetative growth and reproductive growth, there are few reports on miRNAs regulating the development of male sterility in Upland cotton. In present study, 12 small RNA libraries were constructed and sequenced for two development stages of flower buds from a CMS line and its maintainer line. Based on the results, 256 novel miRNAs were allocated to 141 new miRNA families, and 77 known miRNAs belonging to 54 conserved miRNA families were identified as well. Comparative analysis revealed that 61 novel and 10 conserved miRNAs were differentially expressed. Further transcriptome analysis identified 232 target genes for these miRNAs, which participated in cellular developmental process, cell death, pollen germination, and sexual reproduction. In addition, expression patterns of typical miRNA and the negatively regulated target genes, such as PPR, ARF, AP2, and AFB, were verified by qRT-PCR in cotton flower buds. These targets were previously reported to be related to reproduction development and male sterility, suggesting that miRNAs might act as regulators of CMS occurrence. Some miRNAs displayed specific expression profiles in special developmental stages of CMS line and its fertile hybrid (F1). Present study offers new information on miRNAs and their related target genes in exploiting CMS mechanism, and revealing the miRNA regulatory networks in Upland cotton.


Asunto(s)
Gossypium/genética , MicroARNs/genética , Infertilidad Vegetal/genética , Polen/genética , Secuencia Conservada , Flores/genética , Flores/fisiología , Gossypium/fisiología , Polen/fisiología , Transcriptoma
13.
BMC Plant Biol ; 18(1): 307, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30486783

RESUMEN

BACKGROUND: Fluorescence in situ hybridization (FISH) is an efficient cytogenetic technology to study chromosome structure. Transposable element (TE) is an important component in eukaryotic genomes and can provide insights in the structure and evolution of eukaryotic genomes. RESULTS: A FISH probe derived from bacterial artificial chromosome (BAC) clone 299N22 generated striking signals on all 26 chromosomes of the cotton diploid A genome (AA, 2x=26) but very few on the diploid D genome (DD, 2x=26). All 26 chromosomes of the A sub genome (At) of tetraploid cotton (AADD, 2n=4x=52) also gave positive signals with this FISH probe, whereas very few signals were observed on the D sub genome (Dt). Sequencing and annotation of BAC clone 299N22, revealed a novel Ty3/gypsy transposon family, which was named as 'CICR'. This family is a significant contributor to size expansion in the A (sub) genome but not in the D (sub) genome. Further FISH analysis with the LTR of CICR as a probe revealed that CICR is lineage-specific, since massive repeats were found in A and B genomic groups, but not in C-G genomic groups within the Gossypium genus. Molecular evolutionary analysis of CICR suggested that tetraploid cottons evolved after silence of the transposon family 1-1.5 million years ago (Mya). Furthermore, A genomes are more homologous with B genomes, and the C, E, F, and G genomes likely diverged from a common ancestor prior to 3.5-4 Mya, the time when CICR appeared. The genomic variation caused by the insertion of CICR in the A (sub) genome may have played an important role in the speciation of organisms with A genomes. CONCLUSIONS: The CICR family is highly repetitive in A and B genomes of Gossypium, but not amplified in the C-G genomes. The differential amount of CICR family in At and Dt will aid in partitioning sub genome sequences for chromosome assemblies during tetraploid genome sequencing and will act as a method for assessing the accuracy of tetraploid genomes by looking at the proportion of CICR elements in resulting pseudochromosome sequences. The timeline of the expansion of CICR family provides a new reference for cotton evolutionary analysis, while the impact on gene function caused by the insertion of CICR elements will be a target for further analysis of investigating phenotypic differences between A genome and D genome species.


Asunto(s)
Elementos Transponibles de ADN/genética , Gossypium/genética , Cromosomas Artificiales Bacterianos/genética , Cromosomas de las Plantas/genética , Genoma de Planta/genética , Hibridación Fluorescente in Situ , Análisis de Secuencia de ADN , Tetraploidía
14.
Int J Mol Sci ; 19(2)2018 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-29439501

RESUMEN

Intergenomic gene transfer (IGT) is continuous in the evolutionary history of plants. In this field, most studies concentrate on a few related species. Here, we look at IGT from a broader evolutionary perspective, using 24 plants. We discover many IGT events by assessing the data from nuclear, mitochondrial and chloroplast genomes. Thus, we summarize the two roles of the mitochondrion: a source and a pool. That is, the mitochondrion gives massive sequences and integrates nuclear transposons and chloroplast tRNA genes. Though the directions are opposite, lots of likenesses emerge. First, mitochondrial gene transfer is pervasive in all 24 plants. Second, gene transfer is a single event of certain shared ancestors during evolutionary divergence. Third, sequence features of homologies vary for different purposes in the donor and recipient genomes. Finally, small repeats (or micro-homologies) contribute to gene transfer by mediating recombination in the recipient genome.


Asunto(s)
Pool de Genes , Transferencia de Gen Horizontal , Genoma Mitocondrial , Genoma de Planta , Evolución Molecular , Plantas/genética
15.
BMC Genomics ; 18(1): 876, 2017 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-29132310

RESUMEN

BACKGROUND: Cotton (Gossypium spp.) is commonly grouped into eight diploid genomic groups and an allotetraploid genomic group, AD. The mitochondrial genomes supply new information to understand both the evolution process and the mechanism of cytoplasmic male sterility. Based on previously released mitochondrial genomes of G. hirsutum (AD1), G. barbadense (AD2), G. raimondii (D5) and G. arboreum (A2), together with data of six other mitochondrial genomes, to elucidate the evolution and diversity of mitochondrial genomes within Gossypium. RESULTS: Six Gossypium mitochondrial genomes, including three diploid species from D and three allotetraploid species from AD genome groups (G. thurberi D1, G. davidsonii D3-d and G. trilobum D8; G. tomentosum AD3, G. mustelinum AD4 and G. darwinii AD5), were assembled as the single circular molecules of lengths about 644 kb in diploid species and 677 kb in allotetraploid species, respectively. The genomic structures of mitochondrial in D group species were identical but differed from the mitogenome of G. arboreum (A2), as well as from the mitogenomes of five species of the AD group. There mainly existed four or six large repeats in the mitogenomes of the A + AD or D group species, respectively. These variations in repeat sequences caused the major inversions and translocations within the mitochondrial genome. The mitochondrial genome complexity in Gossypium presented eight unique segments in D group species, three specific fragments in A + AD group species and a large segment (more than 11 kb) in diploid species. These insertions or deletions were most probably generated from crossovers between repetitive or homologous regions. Unlike the highly variable genome structure, evolutionary distance of mitochondrial genes was 1/6th the frequency of that in chloroplast genes of Gossypium. RNA editing events were conserved in cotton mitochondrial genes. We confirmed two near full length of the integration of the mitochondrial genome into chromosome 1 of G. raimondii and chromosome A03 of G. hirsutum, respectively, with insertion time less than 1.03 MYA. CONCLUSION: Ten Gossypium mitochondrial sequences highlight the insights to the evolution of cotton mitogenomes.


Asunto(s)
Diploidia , Evolución Molecular , Genoma Mitocondrial/genética , Gossypium/genética , Tetraploidía , Núcleo Celular/genética , Cromosomas de las Plantas/genética , Orden Génico , Reordenamiento Génico , Gossypium/citología , Filogenia , Edición de ARN , Secuencias Repetitivas de Ácidos Nucleicos/genética , Sintenía
16.
Mol Phylogenet Evol ; 112: 268-276, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28414099

RESUMEN

Cotton (Gossypium spp.) is commonly grouped into eight diploid genomic groups, designated A-G and K, and one tetraploid genomic group, namely AD. To gain insight into the phylogeny of Gossypium and molecular evolution of the chloroplast genome duringdiversification, chloroplast genomes (cpDNA) from 6 D-genome and 2 G-genome species of Gossypium (G. armourianum D2-1, G. harknessii D2-2, G. davidsonii D3-d, G. klotzschianum D3-k, G. aridum D4, G. trilobum D8, and G. australe G2, G. nelsonii G3) were newly reported here. In combination with the 26 previously released cpDNA sequences, we performed comparative phylogenetic analyses of 34 Gossypium chloroplast genomes that collectively represent most of the diversity in the genus. Gossypium chloroplasts span a small range in size that is mostly attributable to indels that occur in the large single copy (LSC) region of the genome. Phylogenetic analysis using a concatenation of all genes provides robust support for six major Gossypium clades, largely supporting earlier inferences but also revealing new information on intrageneric relationships. Using Theobroma cacao as an outgroup, diversification of the genus was dated, yielding results that are in accord with previous estimates of divergence times, but also offering new perspectives on the basal, early radiation of all major clades within the genus as well as gaps in the record indicative of extinctions. Like most higher-plant chloroplast genomes, all cotton species exhibit a conserved quadripartite structure, i.e., two large inverted repeats (IR) containing most of the ribosomal RNA genes, and two unique regions, LSC (large single sequence) and SSC (small single sequence). Within Gossypium, the IR-single copy region junctions are both variable and homoplasious among species. Two genes, accD and psaJ, exhibited greater rates of synonymous and non-synonymous substitutions than did other genes. Most genes exhibited Ka/Ks ratios suggestive of neutral evolution, with 8 exceptions distributed among one to several species. This research provides an overview of the molecular evolution of a single, large non-recombining molecular during the diversification of this important genus.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma del Cloroplasto , Gossypium/genética , Análisis de Varianza , ADN de Cloroplastos/genética , Dosificación de Gen , Especiación Genética , Tamaño del Genoma , Mutación INDEL/genética , Funciones de Verosimilitud , Nucleótidos/genética , Sistemas de Lectura Abierta/genética , Filogenia , Especificidad de la Especie
17.
Plant Biotechnol J ; 14(8): 1747-55, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26841044

RESUMEN

The transgenic Bt cotton plant has been widely planted throughout the world for the control of cotton budworm Helicoverpa armigera (Hubner). However, a shift towards insect tolerance of Bt cotton is now apparent. In this study, the gene encoding neuropeptide F (NPF) was cloned from cotton budworm H. armigera, an important agricultural pest. The npf gene produces two splicing mRNA variants-npf1 and npf2 (with a 120-bp segment inserted into the npf1 sequence). These are predicted to form the mature NPF1 and NPF2 peptides, and they were found to regulate feeding behaviour. Knock down of larval npf with dsNPF in vitro resulted in decreases of food consumption and body weight, and dsNPF also caused a decrease of glycogen and an increase of trehalose. Moreover, we produced transgenic tobacco plants transiently expressing dsNPF and transgenic cotton plants with stably expressed dsNPF. Results showed that H. armigera larvae fed on these transgenic plants or leaves had lower food consumption, body size and body weight compared to controls. These results indicate that NPF is important in the control of feeding of H. armigera and valuable for production of potential transgenic cotton.


Asunto(s)
Gossypium/genética , Mariposas Nocturnas/genética , Animales , Clonación Molecular , Metabolismo Energético , Regulación de la Expresión Génica , Gossypium/fisiología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/efectos de los fármacos , Mariposas Nocturnas/fisiología , Neuropéptidos/genética , Neuropéptidos/farmacología , Control de Plagas/métodos , Plantas Modificadas Genéticamente , Empalme del ARN , Nicotiana/genética
18.
Theor Appl Genet ; 129(7): 1429-1446, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27138784

RESUMEN

KEY MESSAGE: QTL mapping based on backcross and RIL populations suggests that epistasis together with partial dominance, over-dominance and their environmental interactions of QTLs play an important role in yield heterosis in upland cotton. A backcross population (BC) was constructed to explore the genetic basis of heterosis in upland cotton (Gossypium hirsutum L.). For yield and yield components, recombinant inbred line (RIL) and BC populations were evaluated simultaneously at three different locations. A total of 35 and 30 quantitative trait loci (QTLs) were detected based on the RILs and BC data, respectively. Six (16.7 %) additive QTLs, 19 (52.8 %) partial dominant QTLs and 11 (30.6 %) over-dominant QTLs were detected by single-locus analysis using composite interval mapping in BC population. QTLs detected for mid-parent heterosis (MPH) were mostly related to those detected in the BC population. No significant correlation was found between marker heterozygosity and performance. It indicated that heterozygosity was not always favorable for performance. Two-locus analysis revealed 46, 25 and 12 QTLs with main effects (M-QTLs), and 55, 63 and 33 QTLs involved in digenic interactions (E-QTLs) were detected for yield and yield components in RIL, BC and MPH, respectively. A large number of M-QTLs and E-QTLs showed QTL by environment interactions (QEs) in three environments. These results suggest that epistasis together with partial dominance, over-dominance and QEs all contribute to yield heterosis in upland cotton.


Asunto(s)
Epistasis Genética , Gossypium/genética , Vigor Híbrido , Sitios de Carácter Cuantitativo , Cruzamientos Genéticos , Ambiente
19.
BMC Genomics ; 16: 770, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26459858

RESUMEN

BACKGROUND: The mitochondrial genome from upland cotton, G. hirsutum, was previously sequenced. To elucidate the evolution of mitochondrial genomic diversity within a single genus, we sequenced the mitochondrial genome from Sea Island cotton (Gossypium barbadense L.). METHODS: Mitochondrial DNA from week-old etiolated seedlings was extracted from isolated organelles using discontinuous sucrose density gradient method. Mitochondrial genome was sequenced with Solexa using paired-end, 90 bp read. The clean reads were assembled into contigs using ABySS and finished via additional fosmid and BAC sequencing. Finally, the genome was annotated and analyzed using different softwares. RESULTS: The G. barbadense (Sea Island cotton) mitochondrial genome was fully sequenced (677,434-bp) and compared to the mitogenome of upland cotton. The G. barbadense mitochondrial DNA contains seven more genes than that of upland cotton, with a total of 40 protein coding genes (excluding possible pseudogenes), 6 rRNA genes, and 29 tRNA genes. Of these 75 genes, atp1, mttB, nad4, nad9, rrn5, rrn18, and trnD(GTC)-cp were each represented by two identical copies. A single 64 kb repeat was largely responsible for the 9 % difference in genome size between the two mtDNAs. Comparison of genome structures between the two mitochondrial genomes revealed 8 rearranged syntenic regions and several large repeats. The largest repeat was missing from the master chromosome in G. hirsutum. Both mitochondrial genomes contain a duplicated copy of rps3 (rps3-2) in conjunction with a duplication of repeated sequences. Phylogenetic and divergence considerations suggest that a 544-bp fragment of rps3 was transferred to the nuclear genome shortly after divergence of the A- and D- genome diploid cottons. CONCLUSION: These results highlight the insights to the evolution of structural variation between Sea Island and upland cotton mitochondrial genomes.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma Mitocondrial , Gossypium/genética , Secuencia de Bases , Biología Computacional , Reordenamiento Génico , Transferencia de Gen Horizontal , Genes Mitocondriales , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Mutación , Filogenia , Seudogenes , ARN de Transferencia/química , ARN de Transferencia/genética , Alineación de Secuencia , Sintenía/genética
20.
Plant Cell Rep ; 34(6): 1005-23, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25700980

RESUMEN

KEY MESSAGE: By comparing series full-length cDNA libraries stressed and control, the dynamic process of salt stress response in Upland cotton was studied, and reactive oxygen species and gibberellins signaling pathways were proposed. The Upland cotton is the most important fiber plant with highly salt tolerance. However, the molecular mechanism underlying salt tolerance in domesticated cotton was unclear. Here, seven full-length cDNA libraries were constructed for seedling roots of Upland cotton 'Zhong G 5' at 0, 3, 12 and 48 h after the treatment of control or 150 mM NaCl stress. About 3300 colonies in each library were selected robotically for 5'-end pyrosequencing, resulting in 20,358 expressed sequence tags (ESTs) totally. And 8516 uniESTs were then assembled, including 2914 contigs and 5602 singletons, and explored for Gene Ontology (GO) function. GO comparison between serial stress libraries and control reflected the growth regulation, stimulus response, signal transduction and biology regulation processes were conducted dynamically in response to salt stress. MYB, MYB-related, WRKY, bHLH, GRAS and ERF families of transcription factors were significantly enriched in the early response. 65 differentially expressed genes (DEGs), mainly associated with reactive oxygen species (ROS) scavenging, gibberellins (GAs) metabolism, signal transduction, transcription regulation, stress response and transmembrane transport, were identified and confirmed by quantitative real-time PCR. Overexpression of selected DEGs increased tolerance against salt stress in transgenic yeast. Results in this study supported that a ROS-GAs interacting signaling pathway of salt stress response was activated in Upland cotton. Our results provided valuable gene resources for further investigation of the molecular mechanism of salinity tolerance.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Gossypium/fisiología , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal/fisiología , Etiquetas de Secuencia Expresada , Biblioteca de Genes , Ontología de Genes , Giberelinas/genética , Gossypium/genética , Gossypium/metabolismo , Raíces de Plantas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Tolerancia a la Sal/genética , Plantas Tolerantes a la Sal/genética , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA