Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 24(11): e56850, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37846507

RESUMEN

The remodeling and stiffening of the extracellular matrix (ECM) is a well-recognized modulator of breast cancer progression. How changes in the mechanical properties of the ECM are converted into biochemical signals that direct tumor cell migration and metastasis remain poorly characterized. Here, we describe a new role for the autophagy-inducing serine/threonine kinases ULK1 and ULK2 in mechanotransduction. We show that ULK1/2 activity inhibits the assembly of actin stress fibers and focal adhesions (FAs) and as a consequence impedes cell contraction and migration, independent of its role in autophagy. Mechanistically, we identify PXN/paxillin, a key component of the mechanotransducing machinery, as a direct binding partner and substrate of ULK1/2. ULK-mediated phosphorylation of PXN at S32 and S119 weakens homotypic interactions and liquid-liquid phase separation of PXN, impairing FA assembly, which in turn alters the mechanical properties of breast cancer cells and their response to mechanical stimuli. ULK1/2 and the well-characterized PXN regulator, FAK/Src, have opposing functions on mechanotransduction and compete for phosphorylation of adjacent serine and tyrosine residues. Taken together, our study reveals ULK1/2 as important regulator of PXN-dependent mechanotransduction.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Paxillin/metabolismo , Mecanotransducción Celular , Fosforilación , Movimiento Celular , Serina/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
2.
Gastroenterology ; 165(5): 1151-1167, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37541527

RESUMEN

BACKGROUND & AIMS: Dysregulation of alternative splicing is implicated in many human diseases, and understanding the genetic variation underlying transcript splicing is essential to dissect the molecular mechanisms of cancers. We aimed to provide a comprehensive functional dissection of splicing quantitative trait loci (sQTLs) in cancer and focus on elucidating its distinct role in colorectal cancer (CRC) mechanisms. METHODS: We performed a comprehensive sQTL analysis to identify genetic variants that control messenger RNA splicing across 33 cancer types from The Cancer Genome Atlas and independently validated in our 154 CRC tissues. Then, large-scale, multicenter, multi-ethnic case-control studies (34,585 cases and 76,023 controls) were conducted to examine the association of these sQTLs with CRC risk. A series of biological experiments in vitro and in vivo were performed to investigate the potential mechanisms of the candidate sQTLs and target genes. RESULTS: The molecular characterization of sQTL revealed its distinct role in cancer susceptibility. Tumor-specific sQTL further showed better response to cancer development. In addition, functionally informed polygenic risk score highlighted the potentiality of sQTLs in the CRC prediction. Complemented by large-scale population studies, we identified that the risk allele (T) of a multi-ancestry-associated sQTL rs61746794 significantly increased the risk of CRC in Chinese (odds ratio, 1.20; 95% CI, 1.12-1.29; P = 8.82 × 10-7) and European (odds ratio, 1.11; 95% CI, 1.07-1.16; P = 1.13 × 10-7) populations. rs61746794-T facilitated PRMT7 exon 16 splicing mediated by the RNA-binding protein PRPF8, thus increasing the level of canonical PRMT7 isoform (PRMT7-V2). Overexpression of PRMT7-V2 significantly enhanced the growth of CRC cells and xenograft tumors compared with PRMT7-V1. Mechanistically, PRMT7-V2 functions as an epigenetic writer that catalyzes the arginine methylation of H4R3 and H3R2, subsequently regulating diverse biological processes, including YAP, AKT, and KRAS pathway. A selective PRMT7 inhibitor, SGC3027, exhibited antitumor effects on human CRC cells. CONCLUSIONS: Our study provides an informative sQTLs resource and insights into the regulatory mechanisms linking splicing variants to cancer risk and serving as biomarkers and therapeutic targets.

3.
J Med Virol ; 96(4): e29579, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572923

RESUMEN

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) primarily targets the respiratory system. Physiologically relevant human lung models are indispensable to investigate virus-induced host response and disease pathogenesis. In this study, we generated human induced pluripotent stem cell (iPSC)-derived alveolar organoids (AOs) using an established protocol that recapitulates the sequential steps of in vivo lung development. AOs express alveolar epithelial type II cell protein markers including pro-surfactant protein C and ATP binding cassette subfamily A member 3. Compared to primary human alveolar type II cells, AOs expressed higher mRNA levels of SARS-CoV-2 entry factors, angiotensin-converting enzyme 2 (ACE2), asialoglycoprotein receptor 1 (ASGR1) and basigin (CD147). Considering the localization of ACE2 on the apical side in AOs, we used three AO models, apical-in, sheared and apical-out for SARS-CoV-2 infection. All three models of AOs were robustly infected with the SARS-CoV-2 irrespective of ACE2 accessibility. Antibody blocking experiment revealed that ASGR1 was the main receptor for SARS-CoV2 entry from the basolateral in apical-in AOs. AOs supported the replication of SARS-CoV-2 variants WA1, Alpha, Beta, Delta, and Zeta and Omicron to a variable degree with WA1 being the highest and Omicron being the least. Transcriptomic profiling of infected AOs revealed the induction of inflammatory and interferon-related pathways with NF-κB signaling being the predominant host response. In summary, iPSC-derived AOs can serve as excellent human lung models to investigate infection of SARS-CoV-2 variants and host responses from both apical and basolateral sides.


Asunto(s)
COVID-19 , Células Madre Pluripotentes Inducidas , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , ARN Viral , Pulmón , Organoides , Receptor de Asialoglicoproteína
4.
Respir Res ; 25(1): 77, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321530

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited treatment options. Circular RNAs (circRNAs) have emerged as a novel class of non-coding RNAs with diverse functions in cellular processes. This review paper aims to explore the potential involvement of circRNAs in the pathogenesis of IPF and their diagnostic and therapeutic implications. We begin by providing an overview of the epidemiology and risk factors associated with IPF, followed by a discussion of the pathophysiology underlying this complex disease. Subsequently, we delve into the history, types, biogenesis, and functions of circRNAs and then emphasize their regulatory roles in the pathogenesis of IPF. Furthermore, we examine the current methodologies for detecting circRNAs and explore their diagnostic applications in IPF. Finally, we discuss the potential utility of circRNAs in the treatment of IPF. In conclusion, circRNAs hold great promise as novel biomarkers and therapeutic targets in the management of IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , ARN Circular , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Biomarcadores
5.
Analyst ; 149(5): 1447-1454, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38197456

RESUMEN

Ventilator-associated pneumonia (VAP) is a prevalent disease caused by microbial infection, resulting in significant morbidity and mortality within the intensive care unit (ICU). The rapid and accurate identification of pathogenic bacteria causing VAP can assist clinicians in formulating timely treatment plans. In this study, we attempted to differentiate bacterial species in VAP by utilizing the volatile organic compounds (VOCs) released by pathogens. We cultured 6 common bacteria in VAP in vitro, including Acinetobacter baumannii, Enterobacter cloacae, Escherichia coli, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Staphylococcus aureus, which covered most cases of VAP infection in clinic. After the VOCs released by bacteria were collected in sampling bags, they were quantitatively detected by a proton transfer reaction-mass spectrometry (PTR-MS), and the characteristic ions were qualitatively analyzed through a fast gas chromatography-proton transfer reaction-mass spectrometry (FGC-PTR-MS). After conducting principal component analysis (PCA) and analysis of similarities (ANOSIM), we discovered that the VOCs released by 6 bacteria exhibited differentiation following 3 h of quantitative cultivation in vitro. Additionally, we further investigated the variations in the types and concentrations of bacterial VOCs. The results showed that by utilizing the differences in types of VOCs, 6 bacteria could be classified into 5 sets, except for A. baumannii and E. cloacae which were indistinguishable. Furthermore, we observed significant variations in the concentration ratio of acetaldehyde and methyl mercaptan released by A. baumannii and E. cloacae. In conclusion, the VOCs released by bacteria could effectively differentiate the 6 pathogens commonly associated with VAP, which was expected to assist doctors in formulating treatment plans in time and improve the survival rate of patients.


Asunto(s)
Neumonía Asociada al Ventilador , Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/análisis , Protones , Neumonía Asociada al Ventilador/diagnóstico , Neumonía Asociada al Ventilador/microbiología , Espectrometría de Masas/métodos , Bacterias
6.
Appl Opt ; 63(1): 204-209, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175022

RESUMEN

The generation of an X-band dual-chirp waveform, which is capable of pulse compression, plays an important role in radar, electric warfare, and satellite communication systems. With the development of applications such as multi-static radar, transmission over long distances has attracted considerable attention. In this paper, a photonic system for X-band dual-chirp waveform generation and transmission based on frequency multiplication and power-fading compensation is put forward and experimentally carried out. Based on a compact dual-parallel Mach-Zehnder modulator (DPMZM), the dual-chirp waveforms of 8.6-9.6 GHz and 9.6-10.6 GHz are generated by an RF carrier of 4.8 GHz and transmitted through a 40 km single-mode fiber (SMF) spool. The dispersion-induced power fading of the chirp waveform is compensated for by about 13 dB. The full width at half maximum (FWHM) and the peak-to-sidelobe ratio (PSR) of the compressed pulses are 1 ns and 11.5 dB, respectively. Moreover, the compensation of power fading in the entire X-band is verified to demonstrate the applicability of our system. By flexibly adjusting the bias voltage of the built-in phase shifter, the system can be applied in more scenarios.

7.
Luminescence ; 39(1): e4620, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37933617

RESUMEN

Rapid and accurate identification of tumor metabolic markers is important for early tumor diagnosis and individualized treatment. Here, a stable monodisperse sub-nanometer platinum (Pt) material was developed as a highly efficient nanozyme with a specific activity of peroxidase as high as 20.86 U mg-1 through the growth of in situ domain-limited Pt quantum dots via the polymer polyvinylpyrrolidone. Further, the synthesis of large quantities of Pt-loaded SiO2 (Pt-SiO2 ) was determined by silylation reaction and used for naked eye colorimetric testing of human alpha-fetoprotein (AFP). In particular, the immunization incubation process occurred in preprepared microplates. A nanozyme-based immunomodel was constructed in the presence of the target AFP, and a chromogenic reaction occurred with exogenous hydrogen peroxide and the chromogenic substrate tetramethylbenzidine. On optimization of experimental conditions, the dynamic working response range for AFP was found to be 0.05-20 ng mL-1 , with a limit of detection of 38.7 pg mL-1 . This work provides a new strategy to design efficient nanozyme-based enzyme-linked immunochromatographic platforms to meet the practical use of replacing natural enzymes.


Asunto(s)
Inmunoadsorbentes , Neoplasias , Humanos , Platino (Metal)/química , alfa-Fetoproteínas , Dióxido de Silicio/química , Peroxidasa , Ensayo de Inmunoadsorción Enzimática , Peróxido de Hidrógeno/química , Colorimetría/métodos
8.
Am J Physiol Cell Physiol ; 325(2): C420-C428, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37399496

RESUMEN

MicroRNAs (miRNAs) regulate gene expression posttranscriptionally and are implicated in viral replication and host tropism. miRNAs can impact the viruses either by directly interacting with the viral genome or modulating host factors. Although many miRNAs have predicted binding sites in the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral RNA genome, little experimental validation has been done. We first identified 492 miRNAs that have binding site(s) on the spike (S) viral RNA by a bioinformatics prediction. We then validated the selected 39 miRNAs by examining S-protein levels after coexpressing the S-protein and a miRNA into the cells. Seven miRNAs were found to reduce the S-protein levels by more than 50%. Among them, miR-15a, miR-153, miR-298, miR-508, miR-1909, and miR-3130 also significantly reduced SARS-CoV-2 viral replication. SARS-CoV-2 infection decreased the expression levels of miR-298, miR-497, miR-508, miR-1909, and miR-3130, but had no significant effects on miR-15a and miR-153 levels. Intriguingly, the targeting sequences of these miRNAs on the S viral RNA showed sequence conservation among the variants of concern. Our results suggest that these miRNAs elicit effective antiviral defense against SARS-CoV-2 by modulating S-protein expression and are likely targeting all the variants. Thus, the data signify the therapeutic potential of miRNA-based therapy for SARS-CoV-2 infections.NEW & NOTEWORTHY MicroRNAs can impact viruses either by directly interacting with the virus genome or by modulating host factors. We identified that cellular miRNAs regulate effective antiviral defense against SARS-CoV-2 via modulating spike protein expression, which may offer a potential candidate for antiviral therapy.


Asunto(s)
COVID-19 , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , SARS-CoV-2/genética , COVID-19/genética , Replicación Viral/genética , ARN Viral/genética , Antivirales
9.
Int J Cancer ; 153(3): 499-511, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37087737

RESUMEN

Previous investigations mainly focused on the associations of dietary fatty acids with colorectal cancer (CRC) risk, which ignored gene-environment interaction and mechanisms interpretation. We conducted a case-control study (751 cases and 3058 controls) and a prospective cohort study (125 021 participants) to explore the associations between dietary fatty acids, genetic risks, and CRC. Results showed that high intake of saturated fatty acid (SFA) was associated with a higher risk of CRC than low SFA intake (HR =1.22, 95% CI:1.02-1.46). Participants at high genetic risk had a greater risk of CRC with the HR of 2.48 (2.11-2.91) than those at low genetic risk. A multiplicative interaction of genetic risk and SFA intake with incident CRC risk was found (PInteraction = 7.59 × 10-20 ), demonstrating that participants with high genetic risk and high SFA intake had a 3.75-fold greater risk of CRC than those with low genetic risk and low SFA intake. Furthermore, incorporating PRS and SFA into traditional clinical risk factors improved the discriminatory accuracy for CRC risk stratification (AUC from 0.706 to 0.731). Multi-omics data showed that exposure to SFA-rich high-fat dietary (HFD) can responsively induce epigenome reprogramming of some oncogenes and pathological activation of fatty acid metabolism pathway, which may contribute to CRC development through changes in gut microbiomes, metabolites, and tumor-infiltrating immune cells. These findings suggest that individuals with high genetic risk of CRC may benefit from reducing SFA intake. The incorporation of SFA intake and PRS into traditional clinical risk factors will help improve high-risk sub-populations in individualized CRC prevention.


Asunto(s)
Neoplasias Colorrectales , Grasas de la Dieta , Humanos , Estudios Prospectivos , Estudios de Casos y Controles , Grasas de la Dieta/efectos adversos , Factores de Riesgo , Ácidos Grasos/efectos adversos , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inducido químicamente
10.
Mol Microbiol ; 118(6): 731-743, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36308071

RESUMEN

Acute respiratory infection by influenza virus is a persistent and pervasive public health problem. Antiviral innate immunity initiated by type I interferon (IFN) is the first responder to pathogen invasion and provides the first line of defense. We discovered that Axin1, a scaffold protein, was reduced during influenza virus infection. We also found that overexpression of Axin1 and the chemical stabilizer of Axin1, XAV939, reduced influenza virus replication in lung epithelial cells. This effect was also observed with respiratory syncytial virus and vesicular stomatitis virus. Axin1 boosted type I IFN response to influenza virus infection and activated JNK/c-Jun and Smad3 signaling. XAV939 protected mice from influenza virus infection. Thus, our studies provide new mechanistic insights into the regulation of the type I IFN response and present a new potential therapeutic of targeting Axin1 against influenza virus infection.


Asunto(s)
Proteína Axina , Gripe Humana , Interferones , Animales , Humanos , Ratones , Proteína Axina/metabolismo , Células Epiteliales , Inmunidad Innata , Gripe Humana/inmunología , Gripe Humana/metabolismo , Interferones/metabolismo , Replicación Viral
11.
Anal Chem ; 95(30): 11375-11382, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392185

RESUMEN

The investigation of volatile organic compounds (VOCs) in human metabolites has been a topic of interest as it holds the potential for the development of non-invasive technologies to screen for organ lesions in vivo. However, it remains unclear whether VOCs differ among healthy organs. Consequently, a study was conducted to analyze VOCs in ex vivo organ tissues obtained from 16 Wistar rats, comprising 12 different organs. The VOCs released from each organ tissue were detected by the headspace-solid phase microextraction-gas chromatography-mass spectrometry technique. In the untargeted analysis of 147 chromatographic peaks, the differential volatiles of rat organs were explored based on the Mann-Whitney U test and fold change (FC > 2.0) compared with other organs. It was found that there were differential VOCs in seven organs. A discussion on the possible metabolic pathways and related biomarkers of organ differential VOCs was conducted. Based on the orthogonal partial least squares discriminant analysis and receiver operating characteristic curve, we found that differential VOCs in the liver, cecum, spleen, and kidney can be used as the unique identification of the corresponding organ. In this study, differential VOCs of organs in rats were systematically reported for the first time. Profiles of VOCs produced by healthy organs can serve as a reference or baseline that may indicate the presence of disease or abnormalities in the organ's function. Differential VOCs can be used as the fingerprint of organs, and future integration with metabolic research may contribute to the development of healthcare.

12.
Cell Mol Life Sci ; 79(9): 481, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962235

RESUMEN

Although 5-methylcytosine (m5C) has been identified as a novel and abundant mRNA modification and associated with energy metabolism, its regulation function in adipose tissue and skeletal muscle is still limited. This study aimed at investigating the effect of mRNA m5C on adipogenesis and myogenesis using Jinhua pigs (J), Yorkshire pigs (Y) and their hybrids Yorkshire-Jinhua pigs (YJ). We found that Y grow faster than J and YJ, while fatness-related characteristics observed in Y were lower than those of J and YJ. Besides, total mRNA m5C levels and expression rates of NSUN2 were higher both in backfat layer (BL) and longissimus dorsi muscle (LDM) of Y compared to J and YJ, suggesting that higher mRNA m5C levels positively correlate with lower fat and higher muscle mass. RNA bisulfite sequencing profiling of m5C revealed tissue-specific and dynamic features in pigs. Functionally, hyper-methylated m5C-containing genes were enriched in pathways linked to impaired adipogenesis and enhanced myogenesis. In in vitro, m5C inhibited lipid accumulation and promoted myogenic differentiation. Furthermore, YBX2 and SMO were identified as m5C targets. Mechanistically, YBX2 and SMO mRNAs with m5C modification were recognized and exported into the cytoplasm from the nucleus by ALYREF, thus leading to increased YBX2 and SMO protein expression and thereby inhibiting adipogenesis and promoting myogenesis, respectively. Our work uncovered the critical role of mRNA m5C in regulating adipogenesis and myogenesis via ALYREF-m5C-YBX2 and ALYREF-m5C-SMO manners, providing a potential therapeutic target in the prevention and treatment of obesity, skeletal muscle dysfunction and metabolic disorder diseases.


Asunto(s)
Adipogénesis , Proteínas de Unión al ARN , Adipogénesis/genética , Animales , Desarrollo de Músculos/genética , Transporte de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Porcinos
13.
Arch Toxicol ; 97(7): 2015-2028, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37245169

RESUMEN

Although genome-wide association studies (GWASs) have identified over 100 colorectal cancer (CRC) risk loci, an understanding of causal genes or risk variants and their biological functions in these loci remain unclear. Recently, genomic loci 10q26.12 with lead SNP rs1665650 was identified as an essential CRC risk loci of Asian populations. However, the functional mechanism of this region has not been fully clarified. Here, we applied an RNA interfering-based on-chip approach to screen for the genes essential for cell proliferation in the CRC risk loci 10q26.12. Notably, HSPA12A had the most significant effect among the identified genes and functioned as a crucial oncogene facilitating cell proliferation. Moreover, we conducted an integrative fine-mapping analysis to identify putative casual variants and further explored their association with CRC risk in a large-scale Chinese population consisting of 4054 cases and 4054 controls and also independently validated in 5208 cases and 20,832 controls from the UK biobank cohort. We identified a risk SNP rs7093835 in the intron of HSPA12A that was significantly associated with an increased risk of CRC (OR 1.23, 95% CI 1.08-1.41, P = 1.92 × 10-3). Mechanistically, the risk variant could facilitate an enhancer-promoter interaction mediated by the transcriptional factor (TF) GRHL1 and ultimately upregulate HSPA12A expression, which provides functional evidence to support our population findings. Collectively, our study reveals the important role of HSPA12A in CRC development and illustrates a novel enhancer-promoter interaction module between HSPA12A and its regulatory elements rs7093835, providing new insights into the etiology of CRC.


Asunto(s)
Neoplasias Colorrectales , Estudio de Asociación del Genoma Completo , Humanos , Predisposición Genética a la Enfermedad , Regiones Promotoras Genéticas , Riesgo , Neoplasias Colorrectales/genética , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Proteínas HSP70 de Choque Térmico/genética
14.
Appl Opt ; 62(31): 8224-8228, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38037923

RESUMEN

In this paper, we present a novel, to the best of our knowledge, photonic scheme for the generation of dual-mode multi-format chirp microwave signals, utilizing a dual-drive dual-parallel Mach-Zehnder modulator (DD-DPMZM). By inputting a single-chirp signal and controlling the input binary sequences, the proposed method can generate up-, down-, dual-, or triangular-chirp signals in both pulse and continuous-wave modes. Moreover, the duty cycle of the generated chirp signals in the pulse mode can be easily adjusted by manipulating the injected binary sequences. The compact structure of the proposed scheme eliminates the need for polarization control in signal switching and avoids the use of any optical filter. Experimental verification confirms the feasibility of our approach, while also pointing towards its promising applications in multi-functional radar systems.

15.
Ecotoxicol Environ Saf ; 261: 115093, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37270882

RESUMEN

Polychlorinated biphenyls (PCBs) are a type of persistent organic pollutant (POP). Our previous study demonstrated that exposure to 0.5-50 µg/kg bw PCB138 during postnatal days (PND) 3-21 led to elevated serum uric acid (UA) levels and kidney injury in adult male mice. Given that the prevalence of hyperuricemia (HUA) is significantly lower in women than in men, it is worth investigating whether POP-induced HUA and its secondary kidney injury have sexual dimorphism. Herein, we exposed female mice to 0.5-50 µg/kg bw PCB138 during PND 3-21, resulting in elevated serum UA levels, but without causing significant kidney damage. Concurrently, we found a negative correlation between serum 17ß-estradiol (E2) and serum UA levels. We also observed down-regulation of estrogen receptor (ER) protein levels in the kidneys of the PCB138-exposed groups. Furthermore, our study showed that E2 rescued the increased UA level and cytotoxicity caused by HUA in human renal tubular epithelial (HK-2) cells. Collectively, our findings suggest that E2 likely plays a crucial protective role in PCB138-induced HUA and kidney injury in female mice. Our research highlights the existence of sexual dimorphism in kidney injury secondary to HUA induced by POPs, which could provide guidance for individuals of different genders in preventing kidney injury caused by environmental factors.


Asunto(s)
Hiperuricemia , Enfermedades Renales , Adulto , Humanos , Masculino , Femenino , Ratones , Animales , Ácido Úrico , Estradiol , Riñón/metabolismo
16.
J Cell Mol Med ; 26(8): 2285-2298, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35201667

RESUMEN

Influenza virus causes approximately 291,000 to 646,000 human deaths worldwide annually. It is also a disease of zoonotic importance, affecting animals such as pigs, horses, and birds. Even though vaccination is being used to prevent influenza virus infection, there are limited options available to treat the disease. Long noncoding RNAs (lncRNAs) are RNA molecules with more than 200 nucleotides that do not translate into proteins. They play important roles in the physiological and pathological processes. In this study, we identified a novel transcript, Lnc-PINK1-2:5 that was upregulated by influenza virus. This lncRNA was predominantly located in the nucleus and was not affected by type I interferons. Overexpression of Lnc-PINK1-2:5 reduced the influenza viral mRNA and protein levels in cells as well as titres in culture media. Knockdown of Lnc-PINK1-2:5 using CRISPR interference enhanced the virus replication. Antiviral activity of Lnc-PINK1-2:5 was independent of influenza virus strains. RNA sequencing analysis revealed that Lnc-PINK1-2:5 upregulated thioredoxin interacting protein (TXNIP) during influenza virus infection. Overexpression of TXNIP reduced influenza virus infection, suggesting that TXNIP is an antiviral gene. Knockdown of TXNIP abolished the Lnc-PINK1-2:5-mediated increase in influenza virus infection. In conclusion, the newly identified Lnc-PINK1-2:5 isoform is an anti-influenza lncRNA acting through the upregulation of TXNIP gene expression.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , ARN Largo no Codificante , Animales , Antivirales , Caballos/genética , Humanos , Virus de la Influenza A/metabolismo , Gripe Humana/genética , Infecciones por Orthomyxoviridae/genética , Proteínas Quinasas , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Porcinos
17.
Anal Chem ; 94(20): 7174-7180, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35536750

RESUMEN

We have developed and characterized a novel drift tube called the direct current-ion funnel (DC-ion funnel) drift tube, consisting of 20 traditional ring electrodes and 5 new DC-focusing electrodes (DC-FEs) for use in proton transfer reaction mass spectrometry (PTR-MS). Ion trajectory simulations demonstrate the ion focusing effect of the DC-FE and DC-ion funnel drift tube. Further comparative experiments show that the PTR-MS with the novel DC-ion funnel drift tube has a higher sensitivity (3.8-7.3 times for the volatile organic compounds considered in this work) than the PTR-MS with a traditional drift tube. Different from conventional radiofrequency (rf) focusing methods, the DC-ion funnel drift tube can realize ion focusing with only a DC electric field and no additional rf power supply, which makes it especially suitable for instruments requiring miniaturization and low power consumption to improve detection sensitivity. In addition, the DC-ion funnel drift tube can easily be coupled to other types of mass spectrometers to increase their detection sensitivity.


Asunto(s)
Protones , Compuestos Orgánicos Volátiles , Electricidad , Electrodos , Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis
18.
Anal Chem ; 94(39): 13368-13376, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36150177

RESUMEN

Sensitivity enhancement in proton transfer reaction mass spectrometry (PTR-MS) is an important development direction. We developed a novel drift tube called a focusing quadrupole ion funnel (FQ-IF) for use in PTR-MS to improve the sensitivity. The FQ-IF consists of 20 layers of stainless steel electrodes, and each layer has 4 quarter rings. The first 6 layers have a constant inner hole diameter of 22 mm; the latter 14 layers taper the inner diameter down to 8 mm. The FQ-IF drift tube can also operate in the direct current (DC) mode (similar to a conventional drift tube) and ion funnel (IF) mode (similar to a conventional ion funnel drift tube) by changing the voltage loading method. The simulation results show that the transmission efficiency of the FQ-IF is significantly improved compared to that of the other two modes. Further experiments show that the product ions of limonene tend to convert into smaller m/z fragment ions at higher voltages for the DC and IF modes. However, unlike the DC and IF modes, the distribution of product ions is stable at higher voltages for the FQ-IF. In other words, a higher RF voltage for the FQ-IF will not increase the collision energy of ions. In addition, the improvements in sensitivity for the FQ-IF range from 13.8 to 87.9 times compared to the DC mode and from 1.7 to 4.8 times compared to the IF mode for the 12 test compounds. The improvements in the limit of detection (LOD) for the FQ-IF range from 2.7 to 35.7 times compared to the DC mode. The FQ-IF provides a valuable reference for improving the sensitivity of PTR-MS and other mass spectrometers.


Asunto(s)
Protones , Acero Inoxidable , Iones , Limoneno , Espectrometría de Masas/métodos
19.
Cell Microbiol ; 23(2): e13281, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33099847

RESUMEN

Due to the frequent mutations, influenza A virus (IAV) becomes resistant to anti-viral drugs targeting influenza viral proteins. There are increasing interests in anti-viral agents that target host cellular proteins required for virus replication. Tankyrase (TNKS) has poly (ADP-ribose) polymerase activity and is a negative regulator of many host proteins. The objectives of this study are to study the role of TNKS2 in IAV infection, identify the microRNAs targeting TNKS2, and to understand the mechanisms involved. We found that TNKS2 expression was elevated in human lung epithelial cells and mouse lungs during IAV infection. Knock-down of TNKS2 by RNA interference reduced viral replication. Using a computation approach and 3'-untranslation regions (3'-UTR) reporter assay, we identified miR-206 as the microRNA that targeted TNKS2. Overexpression of miR-206 reduced viral protein levels and virus production in cell culture. The effect of miR-206 on IAV replication was strain-independent. miR-206 activated JNK/c-Jun signalling, induced type I interferon expression and enhanced Stat signalling. Finally, the delivery of an adenovirus expressing miR-206 into the lung of mice challenged with IAV increased type I interferon response, suppressed viral load in the lungs and increased survival. Our results indicate that miR-206 has anti-influenza activity by targeting TNKS2 and subsequently activating the anti-viral state.


Asunto(s)
Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , MicroARNs/metabolismo , MicroARNs/farmacología , Tanquirasas/genética , Tanquirasas/metabolismo , Replicación Viral/efectos de los fármacos , Regiones no Traducidas 3' , Células A549 , Animales , Línea Celular , Perros , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Interacciones Microbiota-Huesped , Humanos , Gripe Humana/virología , Pulmón/metabolismo , Pulmón/virología , Sistema de Señalización de MAP Quinasas , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/virología , Interferencia de ARN , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Carga Viral
20.
J Org Chem ; 87(17): 11722-11734, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35968716

RESUMEN

In this study, we report a novel and efficient synthetic method to construct isoquinolone scaffold via the Rh(III)-catalyzed (4 + 2) annulation of benzamide with an unreported coupling reagent methyl 2-chloroacrylate. Accordingly, other valuable 1,2-benzothiazine and naphtho[1',2':4,5]imidazo[1,2-a]pyridine derivatives are also obtained through a similar synthetic protocol. Thus, our developed method is highlighted by high yield and reaction versatility.


Asunto(s)
Rodio , Catálisis , Piridinas , Tiazinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA