Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; : e202401837, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39157899

RESUMEN

A novel category of asymmetric boron chromophores with the attachment of two BF2 moieties denoted as BOPAM, has been successfully synthesized via a one-pot three-step reaction starting from N-phenylbenzothioamide. This synthetic route results in the production of [a] and [b]benzo-fused BOPAMs along with post-functionalization of the [a]benzo-fused BOPAMs. The photophysical properties of these compounds have been systematically investigated through steady-state absorption and fluorescence emission measurements in solvents at both ambient and cryogenic temperatures, as well as in the solid state. Computational methods have been employed to elucidate the emissive characteristics of the benzo-fused BOPAMs, revealing distinctive photophysical attributes, including solvent-dependent fluorescence intensity. Remarkably, certain BOPAM derivatives exhibit noteworthy photophysical phenomena, such as the induction of off-on fluorescence emission under specific solvent conditions and the manifestation of intermolecular charge transfer states in solid-state matrices. Through post-functionalization strategies involving the introduction of electron-donating groups onto the [a]benzo-fused BOPAM scaffold, an intramolecular charge transfer (ICT) pathway is activated, leading to substantial fluorescence quenching via non-radiative decay processes. Notably, one [a]benzo-fused BOPAM variant exhibits a pronounced fluorescence enhancement upon exposure to acidic conditions, thereby underscoring its potential utility in pH-sensing applications.

2.
Pharmacol Res ; 207: 107305, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002868

RESUMEN

Cardiomyopathy (CM) represents a heterogeneous group of diseases primarily affecting cardiac structure and function, with genetic and epigenetic dysregulation playing a pivotal role in its pathogenesis. Emerging evidence from the burgeoning field of epitranscriptomics has brought to light the significant impact of various RNA modifications, notably N6-methyladenosine (m6A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N1-methyladenosine (m1A), 2'-O-methylation (Nm), and 6,2'-O-dimethyladenosine (m6Am), on cardiomyocyte function and the broader processes of cardiac and vascular remodelling. These modifications have been shown to influence key pathological mechanisms including mitochondrial dysfunction, oxidative stress, cardiomyocyte apoptosis, inflammation, immune response, and myocardial fibrosis. Importantly, aberrations in the RNA methylation machinery have been observed in human CM cases and animal models, highlighting the critical role of RNA methylating enzymes and their potential as therapeutic targets or biomarkers for CM. This review underscores the necessity for a deeper understanding of RNA methylation processes in the context of CM, to illuminate novel therapeutic avenues and diagnostic tools, thereby addressing a significant gap in the current management strategies for this complex disease.


Asunto(s)
Cardiomiopatías , Epigénesis Genética , ARN , Humanos , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/terapia , ARN/genética , ARN/metabolismo , Metilación , Metilación de ARN
3.
Environ Res ; 251(Pt 2): 118761, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38518914

RESUMEN

The high organic matter in river sediment primarily induces black and odorous rebound. Traditional humic-reducing bacteria demonstrate relatively single metabolic functions and restrain the remediation within complex sediment environments. In addition, Ca(NO3)2 is commonly utilized in synergistic with bioremediation to improve the reducing environment of sediments. In this study, a multifunctional bacterial community with humic reduction-denitrification coupled bacteria was domesticated by the step-feeding strategy in an anaerobic baffle reactor (ABR). The performance, remediation effect, and metabolic mechanisms were analyzed. The results indicated that humic-reducing bacteria (HRB) and denitrifying-humic-reducing bacteria (DF/HRB) have quinone-reduction and denitrification capabilities. The synergistic effect of DF/HRBs and Ca(NO3)2 was superior to HRBs and Ca(NO3)2 on the removal of total organic matter(TOM). Microbial community structure analysis revealed an enhanced relative abundance of denitrification and humic-reducing bacteria (e.g., Thauera, Pseudomonas, Sulfurospirillum, Desulfovibrio, Geobacter) in the DF/HRB, resulting in a superior synergistic effect of DF/HRBs with Ca(NO3)2. This work helps to present an innovative approach to domesticate humic-reducing bacteria suited for the remediation environment effectively. It also expands the application of humic-reducing bacteria for in-situ anaerobic remediation of river sediments.


Asunto(s)
Bacterias , Desnitrificación , Sedimentos Geológicos , Sustancias Húmicas , Sedimentos Geológicos/microbiología , Bacterias/metabolismo , Biodegradación Ambiental , Oxidación-Reducción , Reactores Biológicos/microbiología
4.
Sensors (Basel) ; 24(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38203124

RESUMEN

In the field of maneuvering target tracking, the combined observations of azimuth and Doppler may cause weak observation or non-observation in the application of traditional target-tracking algorithms. Additionally, traditional target tracking algorithms require pre-defined multiple mathematical models to accurately capture the complex motion states of targets, while model mismatch and unavoidable measurement noise lead to significant errors in target state prediction. To address those above challenges, in recent years, the target tracking algorithms based on neural networks, such as recurrent neural networks (RNNs), long short-term memory (LSTM) networks, and transformer architectures, have been widely used for their unique advantages to achieve accurate predictions. To better model the nonlinear relationship between the observation time series and the target state time series, as well as the contextual relationship among time series points, we present a deep learning algorithm called recursive downsample-convolve-interact neural network (RDCINN) based on convolutional neural network (CNN) that downsamples time series into subsequences and extracts multi-resolution features to enable the modeling of complex relationships between time series, which overcomes the shortcomings of traditional target tracking algorithms in using observation information inefficiently due to weak observation or non-observation. The experimental results show that our algorithm outperforms other existing algorithms in the scenario of strong maneuvering target tracking with the combined observations of azimuth and Doppler.

5.
Zhongguo Zhong Yao Za Zhi ; 49(1): 162-174, 2024 Jan.
Artículo en Zh | MEDLINE | ID: mdl-38403349

RESUMEN

This study aims to investigate whether tetramethylpyrazine(TMP) can stimulate angiogenesis in cerebral microvascular endothelial cells and alleviate cerebral ischemic stroke(CIS) and to explore the underlying mechanisms. In the animal study, adult Sprague-Dawley rats(n=15) were assigned into sham surgery(sham), middle cerebral artery occlusion/reperfusion(MCAO/R), and MCAO/R+TMP(intraperitoneal injection of 20 mg·kg~(-1)) groups. The neurological function was evaluated by the Z-Longa method. The cerebral infarction volume was detected by TTC staining. Enzyme-linked immunosorbent assay(ELISA) was employed to detect the expression of vascular endothelial growth factor(VEGF), angiopoietin(Ang), and platelet-derived growth factor(PDGF). Immunofluorescence staining was employed to detect Ki67 and the expression of vascular endothelial growth factor A(VEGFA) and slient information regulator 1(SIRT1). Western blot was employed to determine the expression levels of VEGFA, SIRT1, angiopoietin-2(Ang-2), and platelet-derived growth factor B(PDGFB). In the cell study, mouse brain-derived endothelial cells(Bend.3) were cultured, and the optimal concentration of TMP was determined. Then, VEGF, Ang, and PDGF were detected by ELISA after the addition of cabozantinib. Western blot was employed to measure the expression of VEGFA, Ang-2, and PDGFB. Immunofluorescence staining was used to detect CD31, CD34, and Ki67, and the proliferation, migration, and tube formation ability of Bend.3 cells were observed in vitro. Western blot and immunofluorescence staining were performed to measure the expression of SIRT1 and VEGFA after addition of the SIRT1-specific inhibitor selisistat(EX-527). The results showed that compared with the sham group, the MCAO/R group had severe neurological function damage, increased infarction volume, up-regulated expression of VEGF, VEGFA, Ang, Ang-2, PDGF, and PDGFB, and down-regulated expression of Ki67 and SIRT1(P<0.01). Compared with the MCAO/R group, the MCAO/R+TMP group presented alleviated neurological function damage, reduced infarction volume, and activated expression of VEGF, VEGFA, Ang, Ang-2, PDGF, PDGFB, Ki67, and SIRT1(P<0.01). The cell experiments showed that compared with the normal group, Bend.3 cells were activated by oxygen glucose deprivation/reoxygenation(OGD/R) treatment(P<0.05, P<0.01). Compared with the OGD/R group, the OGD/R+TMP group upregulated the expression levels of VEGF, VEGFA, Ang, Ang-2, PDGF, PDGFB, SIRT1, Ki67, CD31, and CD34, enhanced the angiogenic ability of Bend.3 cells without being inhibited by BMS or EX-527(P<0.05, P<0.01, P<0.001). The results suggest that TMP can activate the SIRT1/VEGFA signaling pathway to stimulate angiogenesis and alleviate CIS injury.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Pirazinas , Accidente Cerebrovascular , Ratas , Animales , Ratones , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Ratas Sprague-Dawley , Proteínas Proto-Oncogénicas c-sis , Sirtuina 1/genética , Sirtuina 1/metabolismo , Angiogénesis , Antígeno Ki-67/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/genética , Transducción de Señal , Infarto de la Arteria Cerebral Media
6.
J Neuroinflammation ; 20(1): 156, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391774

RESUMEN

BACKGROUND: Macrophage in the spinal cord injury (SCI) area imparts a chronic pro-inflammation effect that challenges the recovery of SCI. Previously, endothelial progenitor cell-produced exosomes (EPC-EXOs) have been noticed to facilitate revascularization and inflammation control after SCI. However, their effects on macrophage polarization remained unclear. This study aimed to investigate the EPC-EXOs' role in macrophage polarization and reveal its underlying mechanism. METHODS: We extracted the macrophages and EPC from the bone marrow suspension of C57BL/L mice by centrifugation. After cell identification, the EPC-EXOs were collected by ultra-high-speed centrifugation and exosome extraction kits and identified by transmission electron microscopy and nanoparticle tracking analysis. Then, macrophages were cultured with EPC-EXOs in different concentrations. We labeled the exosome to confirm its internalization by macrophage and detected the macrophage polarization marker level both in vitro and in vivo. We further estimated EPC-EXOs' protective effects on SCI by mice spinal cord tissue H&E staining and motor behavior evaluation. Finally, we performed RT-qPCR to identify the upregulated miRNA in EPC-EXOs and manipulate its expression to estimate its role in macrophage polarization, SOCS3/JAK2/STAT3 pathway activation, and motor behavior improvement. RESULTS: We found that EPC-EXOs decreased the macrophages' pro-inflammatory marker expression and increased their anti-inflammatory marker expression on the 7 and 14 days after SCI. The spinal cord H&E staining results showed that EPC-EXOs raised the tissue-sparing area rate significantly after 28 days of SCI and the motor behavior evaluation indicated an increased BMS score and motor-evoked potential by EPC-EXOs treatment after SCI. The RT-qPCR assay identified that miR-222-3P upregulated in EPC-EXOs and its miRNA-mimic also decreased the pro-inflammatory macrophages and increased the anti-inflammatory macrophages. Additionally, miR-222-3P mimic activated the SOCS3/JAK2/STAT3 pathway, and SOCS3/JAK2/STAT3 pathway inhibition blocked miR-2223P's effects on macrophage polarization and mouse motor behavior. CONCLUSION: Comprehensively, we discovered that EPC-EXOs-derived miR-222-3p affected macrophage polarization via SOCS3/JAK2/STAT3 pathway and promoted mouse functional repair after SCI, which reveals EPC-EXOs' role in modulation of macrophage phenotype and will provide a novel interventional strategy to induce post-SCI recovery.


Asunto(s)
Células Progenitoras Endoteliales , Exosomas , MicroARNs , Traumatismos de la Médula Espinal , Animales , Ratones , Ratones Endogámicos C57BL , Antiinflamatorios , Traumatismos de la Médula Espinal/terapia , Inflamación , Macrófagos , MicroARNs/genética
7.
BMC Surg ; 23(1): 146, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248522

RESUMEN

BACKGROUND: Postoperative pancreatic fistula (POPF) is the most serious complication and the main reason for morbidity and mortality after pancreaticoduodenectomy (PD). Currently, there exists no flawless pancreaticojejunal anastomosis approach. We presents a new approach called Chen's penetrating-suture technique for pancreaticojejunostomy (PPJ), which involves end-to-side pancreaticojejunostomy by suture penetrating the full-thickness of the pancreas and jejunum, and evaluates its safety and efficacy. METHODS: To assess this new approach, between May 2006 and July 2018, 193 consecutive patients who accepted the new Chen's Penetrating-Suture technique after a PD were enrolled in this study. Postoperative morbidity and mortality were evaluated. RESULTS: All cases recovered well after PD. The median operative time was 256 (range 208-352) min, with a median time of 12 (range 8-25) min for performing pancreaticojejunostomy. Postoperative morbidity was 19.7% (38/193) and mortality was zero. The POPF rate was 4.7% (9/193) for Grade A, 1.0% (2/193) for Grade B, and no Grade C cases and one urinary tract infection. CONCLUSION: PPJ is a simple, safe, and reliable technique with ideal postoperative clinical results.


Asunto(s)
Pancreaticoduodenectomía , Pancreatoyeyunostomía , Humanos , Pancreatoyeyunostomía/métodos , Pancreaticoduodenectomía/métodos , Anastomosis Quirúrgica/métodos , Páncreas/cirugía , Fístula Pancreática/epidemiología , Fístula Pancreática/etiología , Fístula Pancreática/prevención & control , Complicaciones Posoperatorias/etiología , Técnicas de Sutura/efectos adversos
8.
Environ Res ; 214(Pt 2): 113992, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35921905

RESUMEN

The rebound of black-odorous occurred in organic-rich sediments has become a critical issue due to its great harm to the ecological environment. Elements such as S, C, and N play a crucial role in the biogeochemical cycle of black-odorous rivers. As electronic acceptors, Ca(NO3)2 and CaO2 can effectively remove acidified volatile sulfide (AVS) and organic matter to control the black-odorous rebound. However, the remediation mechanisms in organic-rich sediments by Ca(NO3)2 and CaO2 are unclear. The present study explored the mechanism of C-N-S interconnection degradation in organic-rich urban river sediments by adding different ratios and sequences of Ca(NO3)2 and CaO2. The results showed that Ca(NO3)2 remediation followed by CaO2 and the accepted electron ratio 1:1 of Ca(NO3)2 to CaO2 is an effective method for controlling the rebound of black-odorous and reducing the accumulation NO2--N. Mainly attributed to that, CaO2 enhanced the degradation of organic matter by stimulating enzymatic activities in the sediments, which is also the main reason for controlling the rebound of black-odorous. Since CaO2 releases O2 and •OH, which inhibit nosZgenes, NO2--N accumulates when remedied simultaneously with Ca(NO3)2 and CaO2. Co-occurrence network analysis illustrated that sulfur-driven autotrophic denitrification bacteria, heterotrophic denitrifying bacteria, and sulfate-reducing bacteria interact strongly inside one module, clarifying a solid interaction of C-N-S substances among these bacteria. Our results reveal the C-N-S interconnection degradation mechanism and provide a new perspective on applying biochemical remediation in organic-rich urban river sediments.


Asunto(s)
Desnitrificación , Nitratos , Procesos Autotróficos , Sedimentos Geológicos , Nitratos/química , Dióxido de Nitrógeno , Ríos
9.
Int J Clin Pract ; 2022: 9177545, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685607

RESUMEN

Objectives: The collateral circulation near the cerebral artery occlusion can contribute to the relief of the symptoms and signs of stroke. Genetic factors play a decisive role in the difference in collateral circulation. Survivin, encoded by the baculoviral inhibitor of apoptosis (IAP) repeat-containing 5 gene (BIRC5), plays an important role in maintaining long-term endothelial integrity and homeostasis and as an angiogenic factor in the treatment of vascular diseases. We hypothesized that genetic variations in the BIRC5 gene may contribute to severity by influencing the collateral circulation. This study aimed at examining how the polymorphism of the BIRC5 gene correlated with the collateral circulation and severity of large artery atherosclerotic stroke. Methods: This study enrolled 428 patients with large artery atherosclerotic stroke. There are no statistical differences in age, sex, social behavior, such as smoking and drinking, between the groups classified by the collateral circulation and by the severity of stroke (P > 0.01). Direct sequencing was performed for the genotyping of single nucleotide polymorphism (SNP) of BIRC5 (rs2071214). The enrolled patients were divided into several subgroups based on the collateral flow grading system from the American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology (ASITN/SIR), the results of the National Institutes of Health Stroke Survey (NIHSS) (6 as a threshold), and the score of the modified Rankin scale (mRS) (for the prediction of prognosis, 2 as a threshold). Differences among subgroups were identified through logistic regression. Results: The analysis of collateral circulation revealed the significant correlation of SNP of rs2071214 with the development of poor collateral circulation of large artery atherosclerotic stroke in the additive model (GG vs. AA, odds ratio (OR) = 3.592, 95% confidence interval (CI) = 1.410-9.150, and P=0.007) and the recessive model (GG vs. AA/GA, OR = 3.313, 95% CI = 1.420-7.727, and P=0.006). The analysis of stroke severity exposed the significant role of the SNP of rs2071214 in increasing stroke severity in the dominant model (GA/GG vs. AA, OR = 1.658, 95% CI = 1.017-2.703, and P=0.043) and the additive model (GA vs. AA, OR = 1.717, 95% CI = 1.021-2.888, and P=0.042). However, the analysis of the short-term outcome indicated that three genetic models were not associated with short-term outcomes in the additive model (GA vs. AA, P=0.815, GG vs. AA, and P=0.336), the dominant model (GA/GG vs. AA and P=0.589), and the recessive model (GG vs. AA/GA and P=0.342). Conclusion: Our findings identified the SNP of rs2071214 of the BIRC5 gene as a risk factor for the poor compensatory ability of collateral circulation and a predictor of stroke severity in large artery atherosclerotic stroke, which suggested that the SNP of rs2071214 can serve as an innovative therapeutic target for patients with acute ischemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Arterias , Circulación Colateral , Humanos , Polimorfismo de Nucleótido Simple/genética , Accidente Cerebrovascular/genética , Survivin/genética
10.
Sensors (Basel) ; 22(8)2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35459057

RESUMEN

Recently, the frequent occurrence of the misuse and intrusion of UAVs has made it a research challenge to identify and detect them effectively, and relatively high bandwidth and pressure on data transmission and real-time processing exist when sampling UAV communication signals using the RF detection method. In this paper, firstly, for data sampling, we chose a compressed sensing technique to replace the traditional sampling theorem and used a multi-channel random demodulator to sample the signal; secondly, for the detection and identification of the presence, type, and flight pattern of UAVs, a multi-stage deep learning-based UAV identification and detection method was proposed by exploiting the difference in communication signals between UAVs and controllers under different circumstances. The data samples are first passed by detectors that detect the presence of UAVs, then classifiers are used to identify the type of UAVs, and finally flight patterns are judged by the corresponding classifiers, for which two neural network structures (DNN and CNN) are constructed by deep learning algorithms and evaluated and validated by a 10-fold cross-validation method, with the DNN network used for detectors and the CNN network for subsequent type and flying mode classification. The experimental results demonstrate, first, the effectiveness of using compressed sensing for sampling the communication signals of UAVs and controllers; and second, the detecting method with multi-stage DL detects higher efficiency and accuracy compared with existing detecting methods, detecting the presence, type, and flight model of UAVs with an accuracy of over 99%.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Recolección de Datos , Redes Neurales de la Computación , Proyectos de Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA