Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36292980

RESUMEN

Globally, hepatocellular carcinoma (HCC) is the sixth most common cancer. In this study, the correlation between mitophagy and HCC prognosis was evaluated using data from The Cancer Genome Atlas (TCGA). Clinical and transcriptomic data of HCC patients were downloaded from TCGA dataset, and mitophagy-related gene (MRG) datasets were obtained from the Molecular Signature Database. Then, a consensus clustering analysis was performed to classify the patients into two clusters. Furthermore, tumor prognosis, clinicopathological features, functional analysis, immune infiltration, immune checkpoint (IC)-related gene expression level, tumor stem cells, ferroptosis status, and N6-methyladenosine analysis were compared between the two clusters. Finally, a mitophagy-related signature was developed. Two clusters (C1 and C2) were identified using the consensus clustering analysis based on the MRG signature. Patients with the C1 subtype exhibited upregulated pathways with better liver function, downregulated cancer-related pathways, lower cancer stem cell scores, lower Tumor Immune Dysfunction and Exclusion scores (TIDE), different ferroptosis status, and better prognosis compared with the patients with the C2 subtype. The C2 subtype was characterized by the increased grade of HCC, as well as the increased number of immune-related pathways and m6A-related genes. Higher immune scores were also observed for the C2 subtype. A signature containing four MRGs (PGAM5, SQSTM1, ATG9A, and GABARAPL1) which can accurately predict the prognosis of HCC patients was then identified. This four-gene signature exhibited a predictive effect in five other cancer types, namely glioma, uveal melanoma, acute myeloid leukemia, adrenocortical carcinoma, and mesothelioma. The mitophagy-associated subtypes of HCC were closely related to the immune microenvironment, immune checkpoint-related gene expression, cancer stem cells, ferroptosis status, m6A, prognosis, and HCC progression. The established MRG signature could predict prognosis in patients with HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Mitofagia , Proteína Sequestosoma-1/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Microambiente Tumoral
2.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899194

RESUMEN

Exposure to mild early-life stresses can slow down aging, and protein phosphorylation might be an essential regulator in this process. However, the mechanisms of phosphorylation-based signaling networks during mild early-life stress remain elusive. Herein, we systematically analyzed the phosphoproteomes of Caenorhabditis elegans, which were treated with three mild temperatures (15 °C, 20 °C, and 25 °C) in two different short-term groups (10 min and 60 min). By utilizing an iTRAQ-based quantitative phosphoproteomic approach, 18,187 phosphosites from 3330 phosphoproteins were detected in this study. Volcano plots illustrated that the phosphorylation abundance of 374 proteins and 347 proteins, were significantly changed at 15 °C and 25 °C, respectively. Gene ontology, KEGG pathway and protein-protein interaction network analyses revealed that these phosphoproteins were primarily associated with metabolism, translation, development, and lifespan determination. A motif analysis of kinase substrates suggested that MAPK, CK, and CAMK were most likely involved in the adaption processes. Moreover, 16 and 14 aging-regulated proteins were found to undergo phosphorylation modifications under the mild stresses of 15 °C and 25 °C, respectively, indicating that these proteins might be important for maintaining long-term health. Further lifespan experiments confirmed that the candidate phosphoproteins, e.g., EGL-27 and XNP-1 modulated longevity at 15 °C, 20 °C, and 25 °C, and they showed increased tolerance to thermal and oxidative stresses. In conclusion, our findings offered data that supports understanding of the phosphorylation mechanisms involved in mild early-life stresses in C. elegans. Data are available via ProteomeXchange with identifier PXD021081.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Respuesta al Choque Térmico , Fosfoproteínas/metabolismo , Proteoma/análisis , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Longevidad , Fosforilación , Transducción de Señal
3.
Proteomics ; 18(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29152854

RESUMEN

Protein C-termini study is still a challenging task and far behind its counterpart, N-termini study. MS based C-terminomics study is often hampered by the low ionization efficiency of C-terminal peptides and the lack of efficient enrichment methods. We previously optimized the C-terminal amine-based isotope labeling of substrates (C-TAILS) method and identified 369 genuine protein C-termini in Escherichia coli. A key limitation of C-TAILS is that the prior protection of amines and carboxylic groups at protein level makes Arg-C as the only specific enzyme in practice. Herein, we report an approach combining multi-enzyme digestion and C-TAILS, which significantly increases the identification rate of C-terminal peptides and consequently improves the applicability of C-TAILS in biological studies. We carry out a systematic study and confirm that the omission of the prior amine protection at protein level has a negligible influence and allows the application of multi-enzyme digestion. We successfully apply five different enzyme digestions to C-TAILS, including trypsin, Arg-C, Lys-C, Lys-N, and Lysarginase. As a result, we identify a total of 722 protein C-termini in E. coli, which is at least 66% more than the results using any single enzyme. Moreover, the favored enzyme and enzyme combination are discovered. Data are available via ProteomeXchange with identifier PXD004275.


Asunto(s)
Aminas/química , Enzimas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Marcaje Isotópico/métodos , Proteoma/análisis , Proteómica/métodos , Fragmentos de Péptidos/análisis , Dominios Proteicos , Espectrometría de Masas en Tándem
4.
Anal Chem ; 90(16): 9700-9707, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30024741

RESUMEN

Nowadays, bottom-up approaches are predominantly adopted in proteomics studies, which necessitate a proteolysis step prior to MS analysis. Trypsin is often the best protease in choice due to its high specificity and MS-favored proteolytic products. A lot of efforts have been made to develop a superior digestion approach but hardly succeed, especially in large-scale proteomics studies. Herein, we report a new tandem digestion using Lys-C and Arg-C, termed Lys-C/Arg-C, which has been proven to be more specific and efficient than trypsin digestion. Reanalysis of our previous data ( Anal. Chem. 2018, 90 (3), 1554-1559) revealed that both Lys-C and Arg-C are trypsin-like proteases and perform better when considered as trypsin. In particular, for Arg-C, the identification capacity is increased to 2.6 times and even comparable with trypsin. The good complementarity, high digestion efficiency, and high specificity of Lys-C and Arg-C prompt the Lys-C/Arg-C digestion. We systematically evaluated Lys-C/Arg-C digestion using qualitative and quantitative proteomics approaches and confirmed its superior performance in digestion specificity, efficiency, and identification capacity to the currently widely used trypsin and Lys-C/trypsin digestions. As a result, we concluded that the Lys-C/Arg-C digestion approach would be the choice of next-generation digestion approach in both qualitative and quantitative proteomics studies. Data are available via ProteomeXchange with identifier PXD009797.


Asunto(s)
Metaloendopeptidasas/química , Proteoma/química , Proteómica/métodos , Serina Endopeptidasas/química , Células HeLa , Humanos , Proteolisis , Espectrometría de Masas en Tándem
5.
Anal Chem ; 90(3): 1554-1559, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29260870

RESUMEN

The bottom-up proteomics approach has become an important strategy in diverse areas of biological research, and the enzymatic digestion is essential for this technology. Endopeptidase Arg-C catalyzing the hydrolytic cleavage of peptide bonds C-terminal to arginine could be an important protease in bottom-up proteomics. However, it has been seldom applied due to its low specificity and high cost. In this report, the reversible amine derivatization method (citraconylation and decitraconylation) was introduced and optimized toward a real Arg-C digestion using trypsin. Combination of the reversible derivatization and trypsin digestion (termed iArg-C digestion for improved Arg-C digestion) resulted in 64.2% more peptide identification (11 925 ± 199 vs 7262 ± 59) and significantly higher cleavage specificity (95.6% vs 73.6%) than the conventional Arg-C digestion. Comparison of iArg-C digestion with the widely used trypsin and Lys-C digestion revealed that iArg-C performed slightly better than Lys-C although not comparable to trypsin. Therefore, the well-established iArg-C digestion method is a promising approach for proteomics studies and could be used as the prior alternative digestion method to trypsin digestion in order to achieve higher proteome coverage. Data are available via ProteomeXchange with identifier PXD007994.

6.
Biochem Biophys Res Commun ; 503(3): 1962-1967, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30078680

RESUMEN

Temperature is one of the primary environmental factors that affect aging, in which protein phosphorylation is an important regulator. Currently, the understanding of phosphorylation events in regulatory networks during aging has remained rather limited. Herein, the phosphoproteomes of C.elegans of different age groups cultured at 20 °C (natural aging) and 25 °C (accelerated aging) were analyzed. Through using the iTRAQ-labeled phosphoproteomics method, 2375 phosphoproteins and 9063 phosphosites were identified. Volcano plots illustrated that 208 proteins during natural aging and 130 proteins during accelerated aging, were significantly changed. Gene ontology and pathway analysis revealed that these proteins were mainly involved in translation, development, metabolisms, and animal behavior processes. Moreover, our results uncovered those kinases CK2, MAPK and CAMK2 might play important roles in aging regulation. Functional experiments confirm that the candidated phosphoprotein GTBP-1 could regulate C.elegans lifespan at 20 °C or 25 °C and is more resistant to heat and oxidative stresses. In summary, our results provided an important resource for future studies of protein phosphorylation in worms. Data are available via ProteomeXchange with identifier PXD009661.


Asunto(s)
Proteínas de Caenorhabditis elegans/análisis , Caenorhabditis elegans/fisiología , Longevidad/fisiología , Fosfoproteínas/análisis , Proteómica , Temperatura , Animales
7.
Int J Mol Sci ; 14(6): 11125-44, 2013 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-23712354

RESUMEN

Soil contamination by chromium (Cr) has become an increasing problem worldwide as a result of extensive industrial activities. Chromium, especially hexavalent Cr, impairs the growth and productivity of plants. Although it has been proposed that plants could modify their metabolism to adapt to Cr stress by reprogramming the expression of genes, especially those related to the antioxidant system, damage response, and electron transport chain, evidence at the protein expression level is lacking. To better understand the precise mechanisms underlying Cr phytoxicity and the plant response to Cr exposure, the time-course of changes in the protein expression profile induced by short-term hexavalent Cr exposure (1, 6 and 24 h) were analyzed in maize leaves. Among the over 1200 protein spots detected reproducibly by two-dimensional electrophoresis (2-DE), 60 were found to be differentially accumulated during Cr stress treatment. Of the Cr-regulated proteins, 58 were identified using tandem mass spectrometry (MS/MS). The Cr-regulated proteins identified were mainly involved in ROS detoxification and defense responses (26%), photosynthesis and chloroplast organization (22%), post-transcriptional processing of mRNA and rRNA (12%), protein synthesis and folding (10%), the DNA damage response (5%), and the cytoskeleton (3%). The possible involvement of these Cr stress-responsive proteins in Cr phytoxicity and the plant response to Cr exposure in maize is discussed, taking into consideration the information available from other plant models. Our results provide preliminary evidence that will facilitate understanding the molecular mechanisms underlying Cr toxicity in maize.


Asunto(s)
Cromo/toxicidad , Hojas de la Planta/metabolismo , Proteoma/metabolismo , Estrés Fisiológico/efectos de los fármacos , Zea mays/fisiología , Regulación hacia Abajo/efectos de los fármacos , Electroforesis en Gel Bidimensional , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/metabolismo , Espectrometría de Masas en Tándem , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos , Zea mays/efectos de los fármacos
8.
Comput Struct Biotechnol J ; 21: 495-505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36618984

RESUMEN

Environmental factors, including temperature, can modulate an animal's lifespan. However, their underlying mechanisms remain largely undefined. We observed a profound effect of temperature on the aging of Caenorhabditis elegans (C. elegans) by performing proteomic analysis at different time points (young adult, middle age, and old age) and temperature conditions (20 °C and 25 °C). Importantly, although at the higher temperature, animals had short life spans, the shift from 20 °C to 25 °C for one day during early adulthood was beneficial for protein homeostasis since; it decreased protein synthesis and increased degradation. Consistent with our findings, animals who lived longer in the 25 °C shift were also more resistant to high temperatures along with oxidative and UV stresses. Furthermore, the lifespan extension by the 25 °C shift was mediated by three important transcription factors, namely FOXO/DAF-16, HSF-1, and HIF-1. We revealed an unexpected and complicated mechanism underlying the effects of temperature on aging, which could potentially aid in developing strategies to treat age-related diseases. Our data are available in ProteomeXchange with the identifier PXD024916.

9.
Front Cardiovasc Med ; 9: 910826, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35924220

RESUMEN

Background: Atrioventricular nodal reentrant tachycardia (AVNRT) is a common arrhythmia. Growing evidence suggests that family aggregation and genetic factors are involved in AVNRT. However, in families with a history of AVNRT, disease-causing genes have not been reported. Objective: To investigate the genetic contribution of familial AVNRT using a whole-exome sequencing (WES) approach. Methods: Blood samples were collected from 20 patients from nine families with a history of AVNRT and 100 control participants, and we systematically analyzed mutation profiles using WES. Gene-based burden analysis, integration of previous sporadic AVNRT data, pedigree-based co-segregation, protein-protein interaction network analysis, single-cell RNA sequencing, and confirmation of animal phenotype were performed. Results: Among 95 related reference genes, seven candidate pathogenic genes have been identified both in sporadic and familial AVNRT, including CASQ2, AGXT, ANK2, SYNE2, ZFHX3, GJD3, and SCN4A. Among the 37 reference genes from sporadic AVNRT, five candidate pathogenic genes were identified in patients with both familial and sporadic AVNRT: LAMC1, ryanodine receptor 2 (RYR2), COL4A3, NOS1, and ATP2C2. To identify the common pathogenic mechanisms in all AVNRT cases, five pathogenic genes were identified in patients with both familial and sporadic AVNRT: LAMC1, RYR2, COL4A3, NOS1, and ATP2C2. Considering the unique internal candidate pathogenic gene within pedigrees, three genes, TRDN, CASQ2, and WNK1, were likely to be the pathogenic genes in familial AVNRT. Notably, the core calcium-signaling pathway may be closely associated with the occurrence of AVNRT, including CASQ2, RYR2, TRDN, NOS1, ANK2, and ATP2C2. Conclusion: Our pedigree-based studies demonstrate that RYR2 and related calcium signaling pathway play a critical role in the pathogenesis of familial AVNRT using the WES approach.

10.
BMC Med Genomics ; 15(1): 189, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068540

RESUMEN

BACKGROUND: Familial dilated cardiomyopathy (DCM) is a genetic cardiomyopathy that is associated with reduced left ventricle function or systolic function. Fifty-one DCM-causative genes have been reported, most of which are inherited in an autosomal dominant manner. However, recessive DCM-causative gene is rarely observed. METHODS: Whole-exome sequencing (WES) was performed in a consanguineous family with DCM to identify candidate variants. Sanger sequencing was utilized to confirm the variant. We then checked the DCM candidate gene in 210 sporadic DCM cases. We next explored BICD2 function in both embryonic and adult bicd2-knockout zebrafish models. In vivo cardiac function of bicd2-knockout fish was detected by echocardiography and RNA-seq. RESULTS: We identified an autosomal recessive and evolutionarily conserved missense variant, NM_001003800.1:c.2429G > A, in BICD2, which segregated with the disease phenotype in a consanguineous family with DCM. Furthermore, we confirmed the presence of BICD2 variants in 3 sporadic cases. Knockout of bicd2 resulted in partial embryonic lethality in homozygotes, suggesting a vital role for bicd2 in embryogenesis. Heart dilation and decreased ejection fraction, cardiac output and stroke volume were observed in bicd2-knockout zebrafish, suggesting a phenotype similar to human DCM. Furthermore, RNA-seq confirmed a larger transcriptome shift in in bicd2 homozygotes than in heterozygotes. Gene set enrichment analysis of bicd2-deficient fish showed the enrichment of altered gene expression in cardiac pathways and mitochondrial energy metabolism. CONCLUSIONS: Our study first shows that BICD2 is a novel candidate gene associated with familial DCM, and our findings will facilitate further insights into the molecular pathological mechanisms of DCM.


Asunto(s)
Cardiomiopatía Dilatada , Adulto , Animales , Cardiomiopatía Dilatada/patología , Consanguinidad , Exoma , Humanos , Proteínas Asociadas a Microtúbulos , Linaje , Pez Cebra/genética
11.
Free Radic Biol Med ; 193(Pt 2): 702-719, 2022 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-36395956

RESUMEN

Keshan disease is an endemic fatal dilated cardiomyopathy that can cause heart enlargement, heart failure, and cardiogenic death. Selenium deficiency is considered to be the main cause of Keshan disease. However, the molecular mechanism underlying Keshan disease remains unclear. Our whole-exome sequencing from 68 patients with Keshan disease and 100 controls found 199 candidate genes by gene-level burden tests. Interestingly, using multiomics data, the selenium-related gene ALAD (δ-aminolevulinic acid dehydratase) was the only candidate causative gene identified by three different analysis approaches. Based on single-cell transcriptome data, ALAD was highly expressed in cardiomyocytes and double mutations of human ALAD dramatically reduced its enzyme activity in vitro compared to negative control. Functional analysis of ALAD inhibition in mice resulted in a Keshan phenotype with left ventricular enlargement and cardiac dysfunction, whereas administration of sodium selenite markedly reversed the changes caused by ALAD inhibition. In addition, sodium selenite reversed Keshan phenotypes by affecting energy metabolism and mitochondrial function in mice as shown by the transcriptomic and proteomic data and the ultrastructure of cardiac myocytes. Our findings are the first to demonstrate that the selenium-related gene ALAD is essential for cardiac function by maintaining normal mitochondrial activity, providing strong molecular evidence supporting the hypothesis of selenium deficiency in Keshan disease. These results identified ALAD as a novel target for therapeutic intervention in Keshan disease and Keshan disease-related dilated cardiomyopathy.


Asunto(s)
Cardiomiopatía Dilatada , Desnutrición , Selenio , Humanos , Ratones , Animales , Cardiomiopatía Dilatada/genética , Selenito de Sodio , Proteómica
12.
Elife ; 92020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32255430

RESUMEN

Synaptic positions underlie precise circuit connectivity. Synaptic positions can be established during embryogenesis and sustained during growth. The mechanisms that sustain synaptic specificity during allometric growth are largely unknown. We performed forward genetic screens in C. elegans for regulators of this process and identified mig-17, a conserved ADAMTS metalloprotease. Proteomic mass spectrometry, cell biological and genetic studies demonstrate that MIG-17 is secreted from cells like muscles to regulate basement membrane proteins. In the nematode brain, the basement membrane does not directly contact synapses. Instead, muscle-derived basement membrane coats one side of the glia, while glia contact synapses on their other side. MIG-17 modifies the muscle-derived basement membrane to modulate epidermal-glial crosstalk and sustain glia location and morphology during growth. Glia position in turn sustains the synaptic pattern established during embryogenesis. Our findings uncover a muscle-epidermis-glia signaling axis that sustains synaptic specificity during the organism's allometric growth.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Epidermis/fisiología , Músculos/fisiología , Neuroglía/fisiología , Transducción de Señal , Sinapsis/fisiología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Desintegrinas/genética , Desintegrinas/fisiología , Desarrollo Embrionario , Células Epidérmicas/fisiología , Metaloendopeptidasas/genética , Metaloendopeptidasas/fisiología , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA