Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nano Lett ; 23(13): 6241-6248, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37098101

RESUMEN

Smart control of ionic interactions is a key factor to manipulate the luminescence dynamics of lanthanides and tune their emission colors. However, it remains challenging to gain a deep insight into the physics involving the interactions between heavily doped lanthanide ions and in particular between the lanthanide sublattices for luminescent materials. Here we report a conceptual model to selectively manipulate the spatial interactions between erbium and ytterbium sublattices by designing a multilayer core-shell nanostructure. The interfacial cross-relaxation is found to be a leading process to quench the green emission of Er3+, and red-to-green color-switchable upconversion is realized by fine manipulation of the interfacial energy transfer on the nanoscale. Moreover, the temporal control of up-transition dynamics can also lead to an observation of green emission due to its fast rise time. Our results demonstrate a new strategy to achieve orthogonal upconversion, showing great promise in frontier photonic applications.

2.
Chem Soc Rev ; 51(5): 1729-1765, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35188156

RESUMEN

Lanthanide-based upconversion nanomaterials have recently attracted considerable attention in both fundamental research and various frontier applications owing to their excellent photon upconversion performance and favourable physicochemical properties. In particular, the emergence of multi-layer core-shell (MLCS) nanostructures offers a versatile and powerful tool to realize well-defined matrix compositions and spatial distributions of the dopant on the nanometer length scale. In contrast to the conventional nanomaterials and commonly investigated core-shell nanoparticles, the rational design of MLCS nanostructures allows us to deliberately introduce more functional properties into an upconversion system, thus providing unprecedented opportunities for the precise manipulation of energy transfer channels, the dynamic control of upconversion processes, the fine tuning of switchable emission colours and new functional integration at a single-particle level. In this review, we present a summary and discussion on the key aspects of the recent progress in lanthanide-based MLCS nanoparticles, including the manipulation of emission and lifetime, the switchable multicolour output and the lanthanide ionic interactions on the nanoscale. Benefitting from the multifunctional and versatile luminescence properties, the MLCS nanostructures exhibit great potential in diversities of frontier applications such as three-dimensional display, upconversion laser, optical memory, anti-counterfeiting, thermometry, bioimaging, and therapy. The outlook and challenges as well as perspectives for the research in MLCS nanostructure materials are also provided. This review would be greatly helpful in exploring new structural designs of lanthanide-based materials to further manipulate the upconversion phenomenon and expand their application boundaries.


Asunto(s)
Elementos de la Serie de los Lantanoides , Nanopartículas , Nanoestructuras , Transferencia de Energía , Elementos de la Serie de los Lantanoides/química , Luminiscencia , Nanopartículas/química , Nanoestructuras/química
3.
Nano Lett ; 22(17): 7042-7048, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-35833965

RESUMEN

Thermal activation of upconversion luminescence in nanocrystals opens up new opportunities in biotechnology and nanophotonics. However, it remains a daunting challenge to achieve a smart control of luminescence behavior in the thermal field with remarkable enhancement and ultrahigh sensitivity. Moreover, the physical picture involved is also debatable. Here we report a novel mechanistic design to realize an ultrasensitive thermally activated upconversion in an erbium sublattice core-shell nanostructure. By enabling a thermosensitive property into the intermediate 4I11/2 level of Er3+ through an energy-migration-mediated surface interaction, the upconverted luminescence was markedly enhanced in the thermal field together with a striking thermochromic feature under 1530 nm irradiation. Importantly, the use of non thermally coupled red and green emissions contributes to the thermal sensitivity up to 5.27% K-1, 3 times higher than that obtained by using conventional thermally coupled green emissions. We further demonstrate that the controllable surface interaction is a general approach to the thermal enhancement of upconversion for a series of lanthanide-based nanomaterials. Our findings pave a new way for the development of smart luminescent materials toward emerging applications such as noncontact nanothermometry, information security, and anticounterfeiting.

4.
Opt Lett ; 47(19): 5176-5179, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181215

RESUMEN

Lead-free double perovskite materials with efficient and stable self-trapped exciton (STE) emissions show enormous potential for next-generation solid-state lighting. However, the low-emission efficiency and difficulty of spectral regulation are two major obstacles to their application. Here, all-inorganic rare-earth-based double perovskite Cs2NaYCl6 single crystals with strong blue emissions were reported as effective hosts to accommodate lanthanide ion doping. By controlling the introduction of Tb3 + ions and efficient energy transfer from the STEs to the dopants, the emission color of Cs2NaYCl6 single crystals was flexibly modulated from blue to green. The quantum yields were also significantly improved from 10% to 78.81% by optimizing the Tb3 + ion concentration. Further, stable light-emitting diode prototypes based on Cs2NaYCl6 color conversion materials were fabricated to demonstrate the practical applications of rare-earth-based double perovskite.

5.
Opt Lett ; 46(24): 6043-6046, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34913914

RESUMEN

Here, Tb3+ ions are incorporated into Cs2Ag0.6Na0.4InCl6:Bi double perovskite microcrystals via a re-crystallization method. Tb3+ ions doping not only makes the white light spectrum adjustable, but also maintains the high photoluminescence quantum yield (PLQY). The optimal value of PLQY is 95%. These are comparable to the current highest values. Noteworthy is that, intrinsic emission of Tb3+ ions is attributed to the effective energy transfer from the trapped exciton state of the double perovskite host to Tb3+ ions. Finally, mixing 30% Tb3+ alloyed Cs2Ag0.6Na0.4InCl6:Bi and Cs2NaInCl6:10%Sb phosphors, a series of double-perovskite-based white light-emitting diodes (WLEDs) are prepared. The color coordinates of the best WLEDs are (0.34, 0.32), the lumen efficiency is 42 lm/W, and the color rendering index is 94.3. It is worth mentioning here that there is no blue light loss caused by energy reabsorption between the two phosphors, because the excitation wavelengths of the two phosphors are concentrated in the ultraviolet band. This work provides a new strategy for preparing high-performance WLED.

6.
Inorg Chem ; 60(4): 2649-2655, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33522231

RESUMEN

Here, composites including highly efficient inert shell-modified NaYF4:Yb/Tm@NaYF4 upconversion nanoparticles (UCNPs) and CsPbI3 perovskite quantum dots (PQDs) have been successfully synthesized by the assistance of (3-aminopropyl)triethoxysilane (APTES) as a precursor for a SiO2 matrix. UCNPs and CsPbI3 PQDs in this composite structure show excellent stability in ambient conditions. Importantly, the efficient UC emission of CsPbI3 PQDs was realized, which means that the single red emission of inert shell-modified UCNPs can be easily obtained by depending on these composite structures. Furthermore, the single red emission wavelength can be easily regulated from 705 to 625 nm by introducing appropriate proportion of Br- ions, which is very difficult to achieve for traditional UCNPs. Moreover, benefiting from the efficient downshifting (DS) red emission of CsPbI3 PQDs, the composites possess the dual-wavelength excitation characteristics. So, the excellent dual-mode anticounterfeiting application has been demonstrated. This work will provide a new idea for the development of perovskite-based multifunctional materials.

7.
Opt Express ; 27(20): A1338-A1349, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31684491

RESUMEN

The effect of energy level alignment between the hole transport layer (HTL) and active layer in PbS quantum dot (QD) solar cells was investigated. Here, a great variation in device performance was observed when employing different hole transporting materials. Devices using HTLs that could not block electrons only show poor device behaviors, while those employing wide band-gap hole transporting materials with shallow lowest unoccupied molecular orbital (LUMO) energies to block electrons exhibit reduced dark currents as well as enhanced device efficiencies. A power conversion efficiency of 4.4% was obtained by utilizing Poly-TPD as the HTL due to the optimized energy level alignment. These improvements were realized by preventing current leakage and consequent counter diode formation. The efficiency can be further improved to 4.9% by inserting EDT-treated PbS QD film (PbS-EDT) hole transporting materials with higher hole mobility as well as suitable energy levels that can increase the collection efficiency.

8.
J Colloid Interface Sci ; 663: 891-901, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38447403

RESUMEN

Exploring the real force that drives the separation of Coulomb-bound electron-hole pairs in the interface of heterojunction photocatalysts can establish a clear mechanism for efficient solar energy conversion efficiency. Herein, the formation of oxygen vacancy (Ov) and isolated Ti3+ was precisely regulated at the interface of g-C3N4/TiO2 Z-scheme heterojunction (g-C3N4/Ov-Ti3+-TiO2) by optimizing the opening degree of the calcination system, showing excellent production rate of CO and CH4 from CO2 photoreduction under visible light. This photocatalytic system also exhibited prominent stability. Combining theoretical calculation and characterization, the introduction of Ov and isolated Ti3+ on the interface could construct a charge transfer channel to break the forbidden transition of n â†’ π*, improving the separation process of photoexcited electron-hole pairs. The photoexcited electrons weakened the covalent interaction of CO bonds to promote the activation of adsorbed inert CO2 molecules, significantly reducing the energy barrier of the rate-limiting step during CO2 reduction. This work demonstrates the great application potential of reasonably regulating heterojunction interface for efficient photocatalytic CO2 reduction.

9.
Nat Commun ; 15(1): 1923, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429262

RESUMEN

Dynamic control of multi-photon upconversion with rich and tunable emission colors is stimulating extensive interest in both fundamental research and frontier applications of lanthanide based materials. However, manipulating photochromic upconversion towards color-switchable emissions of a single lanthanide emitter is still challenging. Here, we report a conceptual model to realize the spatiotemporal control of upconversion dynamics and photochromic evolution of Er3+ through interfacial energy transfer (IET) in a core-shell nanostructure. The design of Yb sublattice sensitization interlayer, instead of regular Yb3+ doping, is able to raise the absorption capability of excitation energy and enhance the upconversion. We find that a nanoscale spatial manipulation of interfacial interactions between Er and Yb sublattices can further contribute to upconversion. Moreover, the red/green color-switchable upconversion of Er3+ is achieved through using the temporal modulation ways of non-steady-state excitation and time-gating technique. Our results allow for versatile designs and dynamic management of emission colors from luminescent materials and provide more chances for their frontier photonic applications such as optical anti-counterfeiting and speed monitoring.

10.
Adv Mater ; 36(13): e2310524, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38150659

RESUMEN

Smart control of ionic interaction dynamics offers new possibilities for tuning and editing luminescence properties of lanthanide-based materials. However, it remains a daunting challenge to achieve the dynamic control of cross relaxation mediated photon upconversion, and in particular the involved intrinsic photophysics is still unclear. Herein, this work reports a conceptual model to realize the color-switchable upconversion of Tm3+ through spatiotemporal control of cross relaxation in the design of NaYF4:Gd@NaYbF4:Tm@NaYF4 sandwich nanostructure. It shows that cross relaxation plays a key role in modulating upconversion dynamics and tuning emission colors of Tm3+. Interestingly, it is found that there is a short temporal delay for the occurrence of cross relaxation in contrast to the spontaneous emission as a result of the slight energy mismatch between relevant energy levels. This further enables a fine emission color tuning upon non-steady state excitation. Moreover, a characteristic quenching time is proposed to describe the temporal evolution of cross relaxation quantitatively. These findings present a deep insight into the physics of ionic interactions in heavy doping systems, and also show great promise in frontier applications including information security, anti-counterfeiting and nanophotonics.

11.
Bioresour Technol ; 369: 128390, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36435420

RESUMEN

Thermocatalytic (trans)esterification of oils/lipids to produce biodiesel is generally energy-consuming, reversible, and controlled by the equilibrium law. Herein, a light-induced photothermal process was illustrated to be highly efficient for biodiesel production (96.8 % yield) from microalgae lipids at room temperature enabled by a biomass-based SO3H-functionalized graphene-like heterogeneous catalyst (S-NGL-600), as optimized by response surface methodology. Infrared thermal imaging indicated that interfacial solar heating led to forming a local photothermal catalytic system, reaching 72.2 °C in 2 min. The local light heating was conducive to evaporation and removal of water from acid sites, resulting in local excess of microalgae lipids to facilitate the forward reaction. Notably, the photothermal catalyst was highly recyclable and exhibited a significantly higher conversion rate of microalgae lipids than industrially used catalyst H2SO4. Life cycle assessment suggested energy-saving advantage (0.87 MJ/MJ) and environmental protection (-89.42 CO2eq/MJ) of the photothermal-driven protocol for microalgae biodiesel production.


Asunto(s)
Microalgas , Animales , Biocombustibles , Aceites , Esterificación , Biomasa , Estadios del Ciclo de Vida
12.
Nanoscale ; 15(13): 6313-6320, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36912676

RESUMEN

2 µm mid-infrared (MIR) light sources have shown great potential for broad applications in molecular spectroscopy, eye-safe lasers, biomedical systems and so on. However, previous research studies were mainly focused on conventional materials such as glasses, glass-ceramics and crystals, limiting the luminescence intensity and miniaturization of photonic devices. Here we report a new strategy to realize the multiple excitation wavelength responsive MIR emission in a single nanoparticle by employing an erbium sublattice as the sensitizing host. Intense 2 µm emission of Ho3+ from its 5I7 → 5I8 optical transition was observed under 808, 980 and 1530 nm excitations. The possible energy transfer mechanism between Er3+ and Ho3+ ions was discussed. We also designed a core-shell-shell nanostructure by inserting an NaYF4:Yb interlayer to maximize the absorption of 980 nm photons and enhance the 2 µm emission. The MIR luminescence under 808 nm excitation can be further improved by introducing Nd3+ into the outermost shell and attaching indocyanine green dyes. These results present an efficient way for the development of MIR luminescent nanomaterials with great potential in the fields of MIR gain devices, nanosized MIR light sources, and nanophotonics.

13.
Bioresour Technol ; 388: 129722, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37704088

RESUMEN

Lignin is usually deemed as an inhibitor to enzymatic hydrolysis of cellulose due to its physical barrier, non-productive adsorption, and steric hindrance. Herein, a novel supramolecular deep eutectic solvent (SUPRADES), comprising ethylene glycol and citric acid in 5:1 M ratio, and ß-cyclodextrin (ß-CD) in a concentration of 3.5% (w/w), was developed to be efficient for pretreating wheat straw. The delignification rate, cellulose enzymatic digestibility, and hemicellulose removal reached 90.45%, 97.36% and 87.24%, respectively, which may be attributed to the introduction of ß-CD with superior ability of both adsorption and in-situ lignin protection to efficiently remove lignin with intact structure from cellulose surface. The mechanisms of high-efficiency lignin extraction/protection were systematically illustrated by adsorption kinetics. Moreover, Trichosporon cutaneum grown on the hemicellulose and cellulose fractions after pretreatment afforded 8.8 g total lipids from 100 g wheat straw. The green SUPARDES pretreatment strategy offers a new avenue for upgrading lignocellulose to biofuels.

14.
Chem Commun (Camb) ; 59(97): 14341-14352, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37987689

RESUMEN

The construction of carbon-nitrogen bonds is vital for producing versatile nitrogenous compounds for the chemical and pharmaceutical industries. Among developed synthetic approaches to nitrogenous chemicals, photocatalysis is particularly prominent and has become one of the emerging fields due to its unique advantages of eco-sustainable characteristics, efficient process integration, no need for high-pressure H2, and tunable synthesis methods for developing advanced photocatalytic materials. Here, the review focuses on potential photocatalytic protocols developed for the construction of robust carbon-nitrogen bonds in discrepant activation environments to produce high-value nitrogenous chemicals. The photocatalytic C-N bond construction strategies and involved reaction mechanisms are elucidated.

15.
ACS Appl Mater Interfaces ; 15(20): 24629-24637, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37162456

RESUMEN

Lead-free halide double perovskite, as one of the promising candidates for lead halide perovskite materials, shows great potential in light-emitting diodes (LEDs), benefiting from its environmental friendliness and high chemical stability. However, the poor regulation of the emission spectra severely limits its application range. Herein, various lanthanide ions were successfully doped in Cs2NaScCl6 double perovskite single crystals (DPSCs) to yield effective and stable emissions spanning from visible to near-infrared (NIR) regions. Notably, efficient energy transfer from the host to the dopants enables tunable emissions with good chromaticity, which is rarely reported in the field of lead-free double perovskite. Moreover, density functional theory calculations reveal that the high local electron density around the [LnCl6]3- octahedron in DPSCs plays a key role in the improvement of photoluminescence quantum yields (PLQYs). The optimal PLQYs are up to 84%, which increases around 3 times over that of the undoped sample. Finally, multicolor and NIR LEDs based on Ln3+-doped Cs2NaScCl6 DPSCs were fabricated and had different application functions. Specifically, the single-composite white LED shows adjustable coordinates and correlated color temperatures, while the NIR LED shows good night vision imaging. This work provides new inspiration for the application of efficient multifunctional LEDs based on lead-free double perovskite materials.

16.
Front Chem ; 10: 1007707, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186593

RESUMEN

Lignin, which is an important component of biomass in nature and is constantly produced in industry, becomes potential raw material for sustainable production of fine chemicals and biofuels. Electrocatalysis has been extensively involved in the activation of simple molecules and cleavage-recasting of complex scaffolds in an elegant environment. As such, electrocatalytic cleavage of C-C(O) in ß-O-4 model molecules of lignin to value-added chemicals has received much attention in recent years. This mini-review introduces various anodes (e.g., Pb, Pt, Ni, Co., and Ir) developed for electro-oxidative lignin degradation (EOLD) under mild conditions. Attention was placed to understand the conversion pathways and involved reaction mechanisms during EOLD, with emphasis on the product distribution caused by different electrodes.

17.
Front Chem ; 10: 904251, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35548672

RESUMEN

Biodiesel considered a green, environmentally friendly, and renewable energy source is one of the most promising candidates to replace fossil fuels to supply energy for the world. The conventional thermocatalytic methods have been extensively explored for producing biodiesel, while inevitably encountering some drawbacks, such as harsh operating conditions and high energy consumption. The catalytic production of biodiesel under mild conditions is a research hotspot but with difficulty. Photocatalysis has recently been highlighted as an eco-friendly and energy-saving approach for biodiesel production. This mini-review summarizes typical photocatalysts for biodiesel production and discusses in detail the catalytic mechanism and strategies of the photo-driven (trans)esterification to produce biodiesel. The current challenges and future opportunities of photo-driven catalysis to prepare biodiesel are also outlined, in steps towards guiding the design of advanced photocatalysts for biodiesel production.

18.
Front Chem ; 10: 882235, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372280

RESUMEN

Efficient valorization of renewable liquid biomass for biodiesel production using the desirable biomass-based catalysts is being deemed to be an environmentally friendly process. Herein, a highly active biomass-based solid acid catalyst (SiO2@Cs-SO3H) with renewable chitosan as raw material through sulfonation procedure under the relatively mild condition was successfully manufactured. The SiO2@Cs-SO3H catalyst was systematically characterized, especially with a large specific surface area (21.82 m2/g) and acidity (3.47 mmol/g). The catalytic activity of SiO2@Cs-SO3H was evaluated by esterification of oleic acid (OA) and methanol for biodiesel production. The best biodiesel yield was acquired by Response Surface Methodology (RSM). The optimized reaction conditions were temperature of 92°C, time of 4.1 h, catalyst dosage of 6.8 wt%, and methanol to OA molar ratio of 31.4, respectively. In this case, the optimal experimental biodiesel yield was found to be 98.2%, which was close to that of the predicted value of 98.4%, indicating the good reliability of RSM employed in this study. Furthermore, SiO2@Cs-SO3H also exhibited good reusability in terms of five consecutive recycles with 87.0% biodiesel yield. As such, SiO2@Cs-SO3H can be considered and used as a bio-based sustainable catalyst of high-efficiency for biodiesel production.

19.
J Phys Chem Lett ; 13(39): 9007-9013, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36149350

RESUMEN

Persistent luminescence (PersL) has been attracting substantial attention in diverse frontier applications such as optical information security and in vivo bioimaging. However, most of the reported PersL emissions are based on the dopants instead of the host matrix, which also plays an important role. In addition, there are few works on the PersL-based multifunctional nanoplatform in nanosized materials. Here, we report a class of novel nanostructure designs with PersL, upconversion, and down-shifting luminescence to realize the fine-tuning of emission colors under different excitation modes including steady-state irradiation, time-gating, and PersL generation. Blue, orange, and green emissions were easily achieved in such a single nanoparticle under suitable excitation modes. Moreover, the physical origin of the PersL of the CaF2 matrix was discussed by simulating the energy band structure with CaxFy defects. Our results provide new opportunities for the design of a new class of multifunctional materials, showing great promise in the field of information encryption security and multilevel anticounterfeiting.


Asunto(s)
Nanopartículas , Nanoestructuras , Luminiscencia , Nanopartículas/química , Nanoestructuras/química
20.
Mater Horiz ; 9(4): 1167-1195, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35084000

RESUMEN

Photon upconversion in lanthanide-based materials has recently shown compelling advantages in a wide range of fields due to their exceptional anti-Stokes luminescence performances and physicochemical properties. In particular, the latest breakthroughs in the optical manipulation of photon upconversion, such as the precise tuning of switchable emission profiles and lifetimes, open up new opportunities for diverse frontier applications from biological imaging to therapy, nanophotonics and three-dimensional displays. A summary and discussion on the recent progress can provide new insights into the fundamental understanding of luminescence mechanisms and also help to inspire new upconversion concepts and promote their frontier applications. Herein, we present a review on the state-of-the-art progress of lanthanide-based upconversion materials, focusing on the newly emerging approaches to the smart control of upconversion in aspects of light intensity, colors, and lifetimes, as well as new concepts. The emerging scientific and technological discoveries based on the well-designed upconversion materials are highlighted and discussed, along with the challenges and future perspectives. This review will contribute to the understanding of the fundamental research of photon upconversion and further promote the development of new classes of efficient upconversion materials towards diversities of frontier applications in the future.


Asunto(s)
Elementos de la Serie de los Lantanoides , Nanopartículas , Elementos de la Serie de los Lantanoides/química , Luminiscencia , Nanopartículas/química , Fotones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA