Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 44(3): e82-e98, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38205640

RESUMEN

BACKGROUND: Integrins mediate the adhesion, crawling, and migration of neutrophils during vascular inflammation. Thiol exchange is important in the regulation of integrin functions. ERp72 (endoplasmic reticulum-resident protein 72) is a member of the thiol isomerase family responsible for the catalysis of disulfide rearrangement. However, the role of ERp72 in the regulation of Mac-1 (integrin αMß2) on neutrophils remains elusive. METHODS: Intravital microscopy of the cremaster microcirculation was performed to determine in vivo neutrophil movement. Static adhesion, flow chamber, and flow cytometry were used to evaluate in vitro integrin functions. Confocal fluorescent microscopy and coimmunoprecipitation were utilized to characterize the interactions between ERp72 and Mac-1 on neutrophil surface. Cell-impermeable probes and mass spectrometry were used to label reactive thiols and identify target disulfide bonds during redox exchange. Biomembrane force probe was performed to quantitatively measure the binding affinity of Mac-1. A murine model of acute lung injury induced by lipopolysaccharide was utilized to evaluate neutrophil-associated vasculopathy. RESULTS: ERp72-deficient neutrophils exhibited increased rolling but decreased adhesion/crawling on inflamed venules in vivo and defective static adhesion in vitro. The defect was due to defective activation of integrin Mac-1 but not LFA-1 (lymphocyte function-associated antigen-1) using blocking or epitope-specific antibodies. ERp72 interacted with Mac-1 in lipid rafts on neutrophil surface leading to the reduction of the C654-C711 disulfide bond in the αM subunit that is critical for Mac-1 activation. Recombinant ERp72, via its catalytic motifs, increased the binding affinity of Mac-1 with ICAM-1 (intercellular adhesion molecule-1) and rescued the defective adhesion of ERp72-deficient neutrophils both in vitro and in vivo. Deletion of ERp72 in the bone marrow inhibited neutrophil infiltration, ameliorated tissue damage, and increased survival during murine acute lung injury. CONCLUSIONS: Extracellular ERp72 regulates integrin Mac-1 activity by catalyzing disulfide rearrangement on the αM subunit and may be a novel target for the treatment of neutrophil-associated vasculopathy.


Asunto(s)
Lesión Pulmonar Aguda , Antígeno de Macrófago-1 , Animales , Ratones , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/metabolismo , Adhesión Celular , Disulfuros , Molécula 1 de Adhesión Intercelular/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Antígeno de Macrófago-1/genética , Antígeno de Macrófago-1/metabolismo , Infiltración Neutrófila , Neutrófilos/metabolismo , Compuestos de Sulfhidrilo/metabolismo
2.
Mol Divers ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935305

RESUMEN

The urokinase-type plasminogen activator receptor (uPAR) emerges as a key target for anti-metastasis owing to its pivotal role in facilitating the invasive and migratory processes of cancer cells. Recently, we identified the uPAR-targeting anti-metastatic ability of diltiazem (22), a commonly used antihypertensive agent. Fine-tuning the chemical structures of known hits represents a vital branch of drug development. To develop novel anti-metastatic drugs, we performed an interface-driven structural evolution strategy on 22. The uPAR-targeting and anti-cancer abilities of this antihypertensive drug wereidentified by us recently. Based on in silico strategy, including extensive molecular dynamics (MD) simulations, hierarchical binding free energy predictions, and ADMET profilings, we designed, synthesized, and identified three new diltiazem derivatives (221-8, 221-57, and 221-68) as uPAR inhibitors. Indeed, all of these three derivatives exhibited uPAR-depending inhibitory activity against PC-3 cell line invasion at micromolar level. Particularly, derivatives 221-68 and 221-8 showed enhanced uPAR-dependent inhibitory activity against the tumor cell invasion compared to the original compound. Microsecond timesclae MD simulations demonstrated the optimized moiety of 221-68 and 221-8 forming more comprehensive interactions with the uPAR, highlighting the reasonability of our strategy. This work introduces three novel uPAR inhibitors, which not only pave the way for the development of effective anti-metastatic therapeutics, but also emphasize the efficacy and robustness of an in silico-based lead compound optimization strategy in drug design.

3.
Biophys J ; 122(21): 4135-4143, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37731243

RESUMEN

Lysophospholipids (lysoPLs) are crucial metabolites involved in various physiological and pathological cellular processes. Understanding their binding interactions, particularly with human serum albumin (HSA), is essential due to their role in regulating lysoPLs-induced cytotoxicity. However, the precise mechanism of lysoPLs binding to HSA remains elusive. In this study, we employed fluorescence quenching and optical interferometry assays to demonstrate direct binding between lysophosphatidylcholine (LPC) and HSA (KD = 25 µM). Furthermore, we determined crystal structures of HSA in complex with LPC, both in the absence and the presence of the endogenous fatty acid myristate (14:0). The crystal structure of binary HSA:LPC revealed that six LPC molecules are bound to HSA at the primary fatty acid binding sites. Interestingly, the ternary HSA:Myr:LPC structure demonstrated the continued binding of three LPC molecules to HSA at binding sites 1, 3, and 5 in the presence of myristate. These findings support HSA's role as a carrier protein for lysoPLs in blood plasma and provide valuable insights into the structural basis of their binding mechanisms.


Asunto(s)
Lisofosfatidilcolinas , Albúmina Sérica Humana , Humanos , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Albúmina Sérica/química , Unión Proteica , Miristatos , Modelos Moleculares , Ácidos Grasos/metabolismo
4.
Mol Pharm ; 20(2): 905-917, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36463525

RESUMEN

Triple-negative breast cancer (TNBC) is highly aggressive and causes a higher proportion of metastatic cases. However, therapies directed to specific molecular targets have rarely achieved clinically meaningful improvements in the outcome of TNBC therapy. A urokinase-type plasminogen activator (uPA), one of the best-validated biomarkers of breast cancer, is an extracellular proteolytic serine protease involved in many pathological and physiological processes, including tumor cell invasion and metastasis. Nafamostat mesylate (NM) is a synthetic compound that inhibits various serine proteases and has been used as a therapeutic agent for the treatment of TNBC. Nevertheless, NM has poor specificity for serine proteases and is easy be hydrolyzed; moreover, the inhibitory mechanism of TNBC therapy is unclear. In this study, we combine NM with a macromolecular drug delivery vehicle, mouse amino-terminal fragment of urokinase-human serum albumin (mATF-HSA), to form a complex (mATF-HSA:NM) using the dilution-incubation-purification method. mATF specifically targets uPAR overexpressed on the surface of TNBC cells; moreover, HSA prevents NM from being hydrolyzed by numerous serine proteases. mATF-HSA:NM showed stronger inhibitory effects on the proliferation and metastasis of TNBC in vitro and in vivo without significant cytotoxicity on normal cells and tissues. In addition, we demonstrated that NM mediates metastasis of TNBC cells through inhibition of uPA using a stable uPA knockdown cell line (MDA-MB231 shuPA). Overall, we have developed a macromolecular complex targeted to treat high uPAR-expressing tumor types, and mATF-HSA can potentially be used to load other types of drugs with tumor-targeting specificity for mouse tumor models and is a promising tool to study tumor biology in mouse tumor models.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Activador de Plasminógeno de Tipo Uroquinasa , Humanos , Ratones , Animales , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Albúmina Sérica Humana , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Resultado del Tratamiento
5.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003338

RESUMEN

Chitinase-3-like protein 1 (CHI3L1), a chitinase-like protein family member, is a secreted glycoprotein that mediates macrophage polarization, inflammation, apoptosis, angiogenesis, and carcinogenesis. Abnormal CHI3L1 expression has been associated with multiple metabolic and neurological disorders, including diabetes, atherosclerosis, and Alzheimer's disease. Aberrant CHI3L1 expression is also reportedly associated with tumor migration and metastasis, as well as contributions to immune escape, playing important roles in tumor progression. However, the physiological and pathophysiological roles of CHI3L1 in the development of metabolic and neurodegenerative diseases and cancer remain unclear. Understanding the polarization relationship between CHI3L1 and macrophages is crucial for disease progression. Recent research has uncovered the complex mechanisms of CHI3L1 in different diseases, highlighting its close association with macrophage functional polarization. In this article, we review recent findings regarding the various disease types and summarize the relationship between macrophages and CHI3L1. Furthermore, this article also provides a brief overview of the various mechanisms and inhibitors employed to inhibit CHI3L1 and disrupt its interaction with receptors. These endeavors highlight the pivotal roles of CHI3L1 and suggest therapeutic approaches targeting CHI3L1 in the development of metabolic diseases, neurodegenerative diseases, and cancers.


Asunto(s)
Quitinasas , Neoplasias , Enfermedades Neurodegenerativas , Humanos , Inflamación/metabolismo , Macrófagos/metabolismo , Proteína 1 Similar a Quitinasa-3
6.
Molecules ; 28(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37375194

RESUMEN

Photodynamic therapy (PDT) is recognized as a powerful method to inactivate cells. However, the photosensitizer (PS), a key component of PDT, has suffered from undesired photobleaching. Photobleaching reduces reactive oxygen species (ROS) yields, leading to the compromise of and even the loss of the photodynamic effect of the PS. Therefore, much effort has been devoted to minimizing photobleaching in order to ensure that there is no loss of photodynamic efficacy. Here, we report that a type of PS aggregate showed neither photobleaching nor photodynamic action. Upon direct contact with bacteria, the PS aggregate was found to fall apart into PS monomers and thus possessed photodynamic inactivation against bacteria. Interestingly, the disassembly of the bound PS aggregate in the presence of bacteria was intensified by illumination, generating more PS monomers and leading to an enhanced antibacterial photodynamic effect. This demonstrated that on a bacterial surface, the PS aggregate photo-inactivated bacteria via PS monomer during irradiation, where the photodynamic efficiency was retained without photobleaching. Further mechanistic studies showed that PS monomers disrupted bacterial membranes and affected the expression of genes related to cell wall synthesis, bacterial membrane integrity, and oxidative stress. The results obtained here are applicable to other types of PSs in PDT.


Asunto(s)
Isoindoles , Compuestos Organometálicos , Fotoblanqueo , Fotoquimioterapia , Fármacos Fotosensibilizantes , Compuestos de Zinc , Compuestos de Zinc/química , Fármacos Fotosensibilizantes/química , Isoindoles/química , Escherichia coli/efectos de los fármacos , Escherichia coli/efectos de la radiación , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/efectos de la radiación
7.
Molecules ; 28(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37241963

RESUMEN

With the increasing demand for tooth bleaching in esthetic dentistry, its safety has been the focus of a comprehensive body of literature. In this context, the aim of the present study was to evaluate the application effects of pentalysine ß-carbonylphthalocyanine zinc (ZnPc(Lys)5)-mediated photodynamic therapy in dentin bleaching and its effects on dentin collagen. We first established a new and reproducible tooth staining model using dentin blocks stained by Orange II and then bleached with ZnPc(Lys)5 (25 µM) and hydrogen peroxide (10% or 30%). Data were analyzed with one- and two-way ANOVA and a significance level of p < 0.05. ZnPc(Lys)5 effectively bleached the dentin samples to an extent comparable to hydrogen peroxide at either 10% or 30% concentrations. Further studies on the dentin morphology, chemical element distribution, and protein constituents, using an electron microscope, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and SDS-PAGE, demonstrated that treatment with the photosensitizer preserved the dentin structure and, at the same time, the major organic component, collagen type I. For comparison, hydrogen peroxide (10% or 30%) treatment significantly degraded the collagen protein. This work indicated that the photosensitizer exerts potent bleaching effects on dentin staining; importantly, does not damage dentin and its collagen content; and opens up a new strategy to further explore various photosensitizers for the bleaching of both tooth enamel and dentin.


Asunto(s)
Peróxido de Hidrógeno , Blanqueamiento de Dientes , Peróxido de Hidrógeno/farmacología , Blanqueamiento de Dientes/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/análisis , Dentina/química , Ácido Hipocloroso/análisis , Colágeno/farmacología , Color
8.
Biophys J ; 121(20): 3940-3949, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36039386

RESUMEN

Nafamostat mesylate (NM) is a synthetic compound that inhibits various serine proteases produced during the coagulation cascade and inflammation. Previous studies showed that NM was a highly safe drug for the treatment of different cancers, but the precise functions and mechanisms of NM are not clear. In this study, we determined a series of crystal structures of NM and its hydrolysates in complex with a serine protease (urokinase-type plasminogen activator [uPA]). These structures reveal that NM was cleaved by uPA and that a hydrolyzed product (4-guanidinobenzoic acid [GBA]) remained covalently linked to Ser195 of uPA, and the other hydrolyzed product (6-amidino-2-naphthol [6A2N]) released from uPA. Strikingly, in the inactive uPA (uPA-S195A):NM structure, the 6A2N side of intact NM binds to the specific pocket of uPA. Molecular dynamics simulations and end-point binding free-energy calculations show that the conf1 of NM (6A2N as P1 group) in the uPA-S195A:NM complex may be more stable than conf2 of NM (GBA as P1 group). Moreover, in the structure of uPA:NM complex, the imidazole group of His57 flips further away from Ser195 and disrupts the stable canonical catalytic triad conformation. These results not only reveal the inhibitory mechanism of NM as an efficient serine protease inhibitor but also might provide the structural basis for the further development of serine protease inhibitors.


Asunto(s)
Inhibidores de Serina Proteinasa , Activador de Plasminógeno de Tipo Uroquinasa , Activador de Plasminógeno de Tipo Uroquinasa/química , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/metabolismo , Serina Proteasas , Imidazoles
9.
Br J Haematol ; 196(4): 1076-1085, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34783361

RESUMEN

Recombinant tissue-type plasminogen activator (rtPA) is the clot lysis drug approved for clinical use, and is characterised by a short half-life and substantial inactivation by plasminogen activator inhibitor-1 (PAI-1). We previously discovered that a tPA mutation (A419Y) at the protease domain led to enhanced fibrinolysis activity. In the present study, we studied the mechanism of such mutation in enhancing the proteolytic activity, and whether such enhancement persists in reteplase, an United States Food and Drug Administration-approved tPA truncated variant. We constructed and expressed a series of reteplase-based mutants, including rPAG (glycosylated rPA), rPAG -Y (with A419Y mutant at rPAG ), rPAG -A4 (tetra-alanine mutation at 37-loop of rPAG ), and rPAG -A4/Y (with both) and evaluated their plasminogen activation and PAI-1 resistance. Surface plasmon resonance analysis showed that the rPAG had fibrin affinity comparable to full-length tPA. Moreover, rPAG -Y had 8·5-fold higher plasminogen activation and stronger tolerance to PAI-1 compared to rPAG . We also found that the mutations containing tetra-alanine (rPAG -A4 and rPAG -A4/Y) had dramatically reduced plasminogen activation and impaired clot lysis. In a pulmonary embolism murine model, rPAG -Y displayed a more efficient thrombolytic effect than rPAG . These results identified a novel mutant reteplase variant of tPA with increased fibrinolytic activity, laying the foundation for the development of a new potent fibrinolytic agent.


Asunto(s)
Tiempo de Lisis del Coágulo de Fibrina/métodos , Fibrinólisis/efectos de los fármacos , Fibrinolíticos/uso terapéutico , Activador de Tejido Plasminógeno/uso terapéutico , Animales , Fibrinolíticos/farmacología , Humanos , Ratones , Mutación Puntual , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Activador de Tejido Plasminógeno/farmacología
10.
J Virol ; 95(19): e0086121, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34160253

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen causing the coronavirus disease 2019 (COVID-19) global pandemic. No effective treatment for COVID-19 has been established yet. The serine protease transmembrane protease serine 2 (TMPRSS2) is essential for viral spread and pathogenicity by facilitating the entry of SARS-CoV-2 into host cells. The protease inhibitor camostat, an anticoagulant used in the clinic, has potential anti-inflammatory and antiviral activities against COVID-19. However, the potential mechanisms of viral resistance and antiviral activity of camostat are unclear. Herein, we demonstrate high inhibitory potencies of camostat for a panel of serine proteases, indicating that camostat is a broad-spectrum inhibitor of serine proteases. In addition, we determined the crystal structure of camostat in complex with a serine protease (uPA [urokinase-type plasminogen activator]), which reveals that camostat is inserted in the S1 pocket of uPA but is hydrolyzed by uPA, and the cleaved camostat covalently binds to Ser195. We also generated a homology model of the structure of the TMPRSS2 serine protease domain. The model shows that camostat uses the same inhibitory mechanism to inhibit the activity of TMPRSS2, subsequently preventing SARS-CoV-2 spread. IMPORTANCE Serine proteases are a large family of enzymes critical for multiple physiological processes and proven diagnostic and therapeutic targets in several clinical indications. The serine protease transmembrane protease serine 2 (TMPRSS2) was recently found to mediate SARS-CoV-2 entry into the host. Camostat mesylate (FOY 305), a serine protease inhibitor active against TMPRSS2 and used for the treatment of oral squamous cell carcinoma and chronic pancreatitis, inhibits SARS-CoV-2 infection of human lung cells. However, the direct inhibition mechanism of camostat mesylate for TMPRSS2 is unclear. Herein, we demonstrate that camostat uses the same inhibitory mechanism to inhibit the activity of TMPRSS2 as uPA, subsequently preventing SARS-CoV-2 spread.


Asunto(s)
Antivirales/farmacología , Ésteres/farmacología , Guanidinas/farmacología , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/química , Serina Endopeptidasas/farmacología , Serina Proteasas/farmacología , Antivirales/química , COVID-19/prevención & control , Carcinoma de Células Escamosas , Ésteres/química , Ésteres/metabolismo , Guanidinas/química , Guanidinas/metabolismo , Humanos , Simulación de Dinámica Molecular , Neoplasias de la Boca , Dominios Proteicos , Alineación de Secuencia , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Serina Proteasas/química , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
11.
FASEB J ; 35(2): e21259, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33417271

RESUMEN

Serine proteases are a large family of enzymes critical for multiple physiological processes, and proven diagnostic and therapeutic targets in several clinical indications. The high similarity of active sites among different serine proteases posts a challenge to reach high selectivity for inhibitors of serine proteases targeting at the active site. Here, we demonstrated that one particular surface loop on serine proteases (autolysis loop) can be used to regulate their catalytic activity, through surveying the recent works including ours, and such an approach can reach high specificity. The autolysis loop is highly variable among different serine proteases, explaining the high specificity of inhibitors targeting the autolysis loop. We also outline the structural origin that links the perturbation of the autolysis loop and the inhibition of protease activity. Thus, the autolysis loop appears to be a highly sensitive allosteric site and can be used as a general handle to develop pharmacological agents to intervene with the activities of serine proteases in, eg, blood coagulation.


Asunto(s)
Dominio Catalítico , Serina Proteasas/química , Inhibidores de Serina Proteinasa/farmacología , Animales , Estabilidad de Enzimas , Humanos , Proteolisis , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/química
12.
Pharmacol Res ; 182: 106331, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35772646

RESUMEN

The Angiopoietin (Ang)-Tyrosine kinase with immunoglobulin-like and EGF-like domains (Tie) axis is an endothelial cell-specific ligand-receptor signaling pathway necessary for vascular and lymphatic development. The Ang-Tie axis is involved in regulating angiogenesis, vascular remodeling, vascular permeability, and inflammation to maintain vascular quiescence. Disruptions in the Ang-Tie axis are involved in many vascular and lymphatic diseases and play an important role in physiological and pathological vascular processes. Given recent advances in the Ang-Tie axis in the vascular and lymphatic systems, this review focuses on the multiple functions of the Ang-Tie axis in inflammation-induced vascular permeability, vascular remodeling, atherosclerosis, ocular angiogenesis, tumor angiogenesis, and metastasis. A summary of relevant therapeutic approaches to the Ang-Tie axis, including therapeutic antibodies, recombinant proteins and small molecule drugs are also discussed. The purpose of this review is to provide new hypotheses and identify potential therapeutic strategies based on the Ang-Tie signaling axis for the treatment of vascular and lymphatic-related diseases.


Asunto(s)
Angiopoyetinas , Receptor TIE-2 , Angiopoyetina 1 , Angiopoyetinas/metabolismo , Humanos , Inflamación , Sistema Linfático/metabolismo , Neovascularización Patológica , Receptor TIE-2/metabolismo
13.
J Nat Prod ; 85(5): 1332-1339, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35471830

RESUMEN

Protein disulfide isomerase (PDI) is a vital oxidoreductase. Extracellular PDI promotes thrombus formation but does not affect physiological blood hemostasis. Inhibition of extracellular PDI has been demonstrated as a promising strategy for antithrombotic treatment. Herein, we focused on the major substrate binding site, a unique pocket in the PDI b' domain, and identified four natural products binding to PDI by combining virtual screening with tryptophan fluorescence-based assays against a customized natural product library. These hits all directly bound to the PDI-b' domain and inhibited the reductase activity of PDI. Among them, galangin showed the most prominent potency (5.9 µM) against PDI and as a broad-spectrum inhibitor for vascular thiol isomerases. In vivo studies manifested that galangin delayed the time of blood vessel occlusion in an electricity-induced mouse thrombosis model. Molecular docking and dynamics simulation further revealed that the hydroxyl-substituted benzopyrone moiety of galangin deeply inserted into the interface between the PDI-b' substrate-binding pocket and the a' domain. Together, these findings provide a potential antithrombotic drug candidate and demonstrate that the PDI b' domain is a critical domain for inhibitor development. Besides, we also report an innovative high-throughput screening method for the rapid discovery of PDI b' targeted inhibitors.


Asunto(s)
Productos Biológicos , Trombosis , Animales , Sitios de Unión , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Fibrinolíticos/farmacología , Ratones , Simulación del Acoplamiento Molecular , Unión Proteica , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/metabolismo , Trombosis/tratamiento farmacológico
14.
Biochem J ; 478(8): 1525-1545, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33787846

RESUMEN

The Nef protein of human and simian immunodeficiency viruses boosts viral pathogenicity through its interactions with host cell proteins. By combining the polyvalency of its large unstructured regions with the binding selectivity and strength of its folded core domain, Nef can associate with many different host cell proteins, thereby disrupting their functions. For example, the combination of a linear proline-rich motif and hydrophobic core domain surface allows Nef to bind tightly and specifically to SH3 domains of Src family kinases. We investigated whether the interplay between Nef's flexible regions and its core domain could allosterically influence ligand selection. We found that the flexible regions can associate with the core domain in different ways, producing distinct conformational states that alter the way in which Nef selects for SH3 domains and exposes some of its binding motifs. The ensuing crosstalk between ligands might promote functionally coherent Nef-bound protein ensembles by synergizing certain subsets of ligands while excluding others. We also combined proteomic and bioinformatics analyses to identify human proteins that select SH3 domains in the same way as Nef. We found that only 3% of clones from a whole-human fetal library displayed Nef-like SH3 selectivity. However, in most cases, this selectivity appears to be achieved by a canonical linear interaction rather than by a Nef-like 'tertiary' interaction. Our analysis supports the contention that Nef's mode of hijacking SH3 domains is a virus-specific adaptation with no or very few cellular counterparts. Thus, the Nef tertiary binding surface is a promising virus-specific drug target.


Asunto(s)
VIH-1/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo K/química , Proteínas Nucleares/química , Proteínas Proto-Oncogénicas c-fyn/química , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/química , Sitio Alostérico , Secuencia de Aminoácidos , Clonación Molecular , Biología Computacional/métodos , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Feto , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , VIH-1/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Interacciones Huésped-Patógeno/genética , Humanos , Ligandos , Simulación de Dinámica Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Termodinámica , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
15.
Clin Oral Investig ; 26(2): 2175-2186, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34657223

RESUMEN

OBJECTIVES: The current tooth bleaching materials are associated with adverse effect. Photodynamic method based on a novel photosensitizer alone, without combining with peroxides, is evaluated for tooth bleaching application. MATERIALS AND METHODS: Teeth samples were randomly divided into 3 groups with different treatment schemes, including negative control group (group A, physiological saline), experimental group (group B, ZnPc(Lys)5), and the positive control group (group C, hydrogen peroxide). Tooth color, surface microhardness, and roughness were determined at baseline, right after the first and second phase of bleaching, as well as 1 week and 1 month post-bleaching. Four samples in each group was randomly selected to evaluate the changes in surface morphology using the scanning electron microscope. RESULTS: The color change values (ΔE) in group B (7.10 ± 1.03) and C (12.22 ± 2.35) were significantly higher than that in group A (0.93 ± 0.30, P < 0.05). Additionally, surface microhardness and roughness were significantly affected in group C, but not in the group A and B. Furthermore, the scanning electron microscope images showed no adverse effect of enamel in the group A and B while the group C demonstrated corrosive changes. CONCLUSIONS: ZnPc(Lys)5 had a satisfactory bleaching effect and is promising to be a new type of tooth bleaching agent. CLINICAL RELEVANCE: The current tooth bleaching materials give a satisfactory clinical outcome and long-term stability, but associated with some adverse reactions. Photosenstizer ZnPc(Lys)5 eliminated the main side effects observed in hydrogen peroxide-based agents on the enamel, and also had a satisfactory bleaching effect and provide a novel selective bleaching scheme for clinical use.


Asunto(s)
Fotoquimioterapia , Blanqueadores Dentales , Blanqueamiento de Dientes , Dureza , Peróxido de Hidrógeno , Peróxidos , Urea
16.
J Clean Prod ; 379: 134632, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36246409

RESUMEN

Quaternary ammonium compounds (QACs) are inexpensive and readily available disinfectants, and have been widely used, especially since the COVID-19 outbreak. The toxicity of QACs to humans has raised increasing concerns in recent years. Here, a new type of QACs was synthesized by replacing the alkyl chain with zinc phthalocyanine (ZnPc), which consists of a large aromatic ring and is hydrophobic in nature, similar to the alkyl chain of QACs. Three ZnPc-containing disinfectants were synthesized and fully characterized. These compounds showed 15-16 fold higher antimicrobial effect against Gram-negative bacteria than the well-known QACs with half-maximal inhibitory (IC50) values of 1.43 µM, 2.70 µM, and 1.31 µM, respectively. With the assistance of 680 nm light, compounds 4 and 6 had much higher bactericidal toxicities at nanomolar concentrations. Compound 6 had a bactericidal efficacy of close to 6 logs (99.9999% kill rate) at 1 µM to Gram-positive bacteria, including MRSA, under light illumination. Besides, these compounds were safe for mammalian cells. In a mouse model, compound 6 was effective in healing wound infection. Importantly, compound 6 was easily degraded at working concentrations under sunlight illumination, and is environmentally friendly. Thus, compound 6 is a novel and promising disinfectant.

17.
Angew Chem Int Ed Engl ; 61(41): e202210019, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35975881

RESUMEN

Herein, a giant Sb-rich polyoxometalate (POM) {Sb21 Tb7 W56 } is reported, which contains the largest number of Sb atoms in a POM so far. The Sb-rich POM has many interesting structural features and is a rare example of a soluble and water-stable giant POM. Biomedical studies indicate that the Sb-rich POM exhibits broad-spectrum antitumor activity against various cancer cell lines by reactivating the P53-dependent apoptotic processes and disrupting the mitochondrial membrane. In addition, this Sb-rich POM was capable of suppressing the growth and metastasis of a breast cancer in vivo. This work demonstrates that Sb-rich POMs are promising candidates for the development of new anticancer drugs.


Asunto(s)
Antineoplásicos , Compuestos de Tungsteno , Aniones , Antimonio/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Humanos , Polielectrolitos , Proteína p53 Supresora de Tumor , Compuestos de Tungsteno/química , Compuestos de Tungsteno/farmacología , Agua
18.
Environ Microbiol ; 23(5): 2366-2373, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33538382

RESUMEN

The Gram-positive bacterium Bacillus subtilis initiates the sporulation process under conditions of nutrient limitation. Here, we review related work in this field, focusing on the protein processing of the pro-σK activation. The purpose of this review is to illustrate the mechanism of pro-σK activation and provide structural insights into the regulation of spore production. Sporulation is not only important in basic science but also provides mechanistic insight for bacterial control in applications in, e.g., food industry.


Asunto(s)
Bacillus subtilis , Factor sigma , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Factor sigma/metabolismo , Esporas Bacterianas/metabolismo
19.
Nat Chem Biol ; 15(12): 1241-1248, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31611704

RESUMEN

The Holliday junction (HJ) is a key intermediate during homologous recombination and DNA double-strand break repair. Timely HJ resolution by resolvases is critical for maintaining genome stability. The mechanisms underlying sequence-specific substrate recognition and cleavage by resolvases remain elusive. The monokaryotic chloroplast 1 protein (MOC1) specifically cleaves four-way DNA junctions in a sequence-specific manner. Here, we report the crystal structures of MOC1 from Zea mays, alone or bound to HJ DNA. MOC1 uses a unique ß-hairpin to embrace the DNA junction. A base-recognition motif specifically interacts with the junction center, inducing base flipping and pseudobase-pair formation at the strand-exchanging points. Structures of MOC1 bound to HJ and different metal ions support a two-metal ion catalysis mechanism. Further molecular dynamics simulations and biochemical analyses reveal a communication between specific substrate recognition and metal ion-dependent catalysis. Our study thus provides a mechanism for how a resolvase turns substrate specificity into catalytic efficiency.


Asunto(s)
Cloroplastos/metabolismo , Resolvasas de Unión Holliday/metabolismo , Proteínas de Plantas/metabolismo , Resolvasas de Unión Holliday/química , Simulación de Dinámica Molecular , Conformación Proteica , Especificidad por Sustrato
20.
Exp Cell Res ; 391(1): 111987, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32240661

RESUMEN

BACKGROUND: The protein plasminogen activator inhibitor-1 (PAI-1), an inhibitor specific for urokinase plasminogen activator (uPA) and tissue plasminogen activator (tPA), has been shown to have a key role in cancer metastases. Currently, it is unknown as to whether the exocellular inhibition of PAI-1 can inhibit the migration of cancer cells. METHODS: By fusing the mutated serine protease domain (SPD) of uPA and human serum albumin (HSA), PAItrap3, a protein that traps PAI-1, was synthesized and experiments were conducted to determine if exocellular PAItrap3 attenuates PAI-1-induced cancer cell migration in vitro. RESULTS: PAItrap3 (0.8 µM) significantly inhibited the motility of MCF-7, MDA-MB-231, HeLa and 4T1 cancer cells, by 90%, 50%, 30% and 20%, respectively, without significantly altering their proliferation. The PAI-1-induced rearrangement of F-actin was significantly inhibited by PAItrap3, which produced a decrease in the number of cell protrusions by at least 20%. CONCLUSIONS: In vitro, PAItrap3 inhibited PAI-1-induced cancer cell migration, mainly through inhibiting the rearrangement of F-actin. Overall, these results, provided they can be extrapolated to humans, suggest that the PAItrap3 protein could be used as an exocellular inhibitor to attenuate cancer metastases.


Asunto(s)
Actinas/genética , Movimiento Celular/efectos de los fármacos , Inhibidor 1 de Activador Plasminogénico/farmacología , Inhibidor de Proteína C/farmacología , Actinas/antagonistas & inhibidores , Actinas/metabolismo , Sitios de Unión , Línea Celular , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Células HeLa , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Histidina/genética , Histidina/metabolismo , Humanos , Células MCF-7 , Oligopéptidos/genética , Oligopéptidos/metabolismo , Pichia/genética , Pichia/metabolismo , Inhibidor 1 de Activador Plasminogénico/química , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Unión Proteica , Inhibidor de Proteína C/química , Inhibidor de Proteína C/genética , Inhibidor de Proteína C/metabolismo , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA