Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(21): 4467-4480.e7, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34687604

RESUMEN

Viral RNA-dependent RNA polymerases (RdRps) are a target for broad-spectrum antiviral therapeutic agents. Recently, we demonstrated that incorporation of the T-1106 triphosphate, a pyrazine-carboxamide ribonucleotide, into nascent RNA increases pausing and backtracking by the poliovirus RdRp. Here, by monitoring enterovirus A-71 RdRp dynamics during RNA synthesis using magnetic tweezers, we identify the "backtracked" state as an intermediate used by the RdRp for copy-back RNA synthesis and homologous recombination. Cell-based assays and RNA sequencing (RNA-seq) experiments further demonstrate that the pyrazine-carboxamide ribonucleotide stimulates these processes during infection. These results suggest that pyrazine-carboxamide ribonucleotides do not induce lethal mutagenesis or chain termination but function by promoting template switching and formation of defective viral genomes. We conclude that RdRp-catalyzed intra- and intermolecular template switching can be induced by pyrazine-carboxamide ribonucleotides, defining an additional mechanistic class of antiviral ribonucleotides with potential for broad-spectrum activity.


Asunto(s)
Pirazinas/química , Virus ARN/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Recombinación Genética , Ribonucleótidos/química , Animales , Antivirales , Catálisis , Células Cultivadas , Técnicas Genéticas , Genoma , Genoma Viral , Recombinación Homóloga , Humanos , Cinética , Ratones , Ratones Transgénicos , Simulación de Dinámica Molecular , Mutagénesis , Nucleótidos/genética , Conformación Proteica , ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , RNA-Seq , Transgenes , Virulencia
2.
J Virol ; 95(21): e0089721, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34379497

RESUMEN

Enterovirus A71 (EV-A71) and many members of the Picornaviridae family are neurotropic pathogens of global concern. These viruses are primarily transmitted through the fecal-oral route, and thus suitable animal models of oral infection are needed to investigate viral pathogenesis. An animal model of oral infection was developed using transgenic mice expressing human SCARB2 (hSCARB2 Tg), murine-adapted EV-A71/MP4 virus, and EV-A71/MP4 virus with an engineered nanoluciferase gene that allows imaging of viral replication and spread in infected mice. Next-generation sequencing of EV-A71 genomes in the tissues and organs of infected mice was also performed. Oral inoculation of EV-A71/MP4 or nanoluciferase-carrying MP4 virus stably induced neurological symptoms and death in infected 21-day-old weaned mice. In vivo bioluminescence imaging of infected mice and tissue immunostaining of viral antigens indicated that orally inoculated virus can spread to the central nervous system (CNS) and other tissues. Next-generating sequencing further identified diverse mutations in viral genomes that can potentially contribute to viral pathogenesis. This study presents an EV-A71 oral infection murine model that efficiently infects weaned mice and allows tracking of viral spread, features that can facilitate research into viral pathogenesis and neuroinvasion via the natural route of infection. IMPORTANCE Enterovirus A71 (EV-A71), a positive-strand RNA virus of the Picornaviridae, poses a persistent global public health problem. EV-A71 is primarily transmitted through the fecal-oral route, and thus suitable animal models of oral infection are needed to investigate viral pathogenesis. We present an animal model of EV-A71 infection that enables the natural route of oral infection in weaned and nonimmunocompromised 21-day-old hSCARB2 transgenic mice. Our results demonstrate that severe disease and death could be stably induced, and viral invasion of the CNS could be replicated in this model, similar to severe real-world EV-A71 infections. We also developed a nanoluciferase-containing EV-A71 virus that can be used with this animal model to track viral spread after oral infection in real time. Such a model offers several advantages over existing animal models and can facilitate future research into viral spread, tissue tropism, and viral pathogenesis, all pressing issues that remain unaddressed for EV-A71 infections.


Asunto(s)
Sistema Nervioso Central/virología , Enterovirus Humano A/patogenicidad , Infecciones por Enterovirus/complicaciones , Proteínas de Membrana de los Lisosomas/genética , Boca/virología , Enfermedades del Sistema Nervioso/virología , Receptores Depuradores/genética , Animales , Modelos Animales de Enfermedad , Enterovirus Humano A/genética , Infecciones por Enterovirus/patología , Infecciones por Enterovirus/virología , Genoma Viral , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Tropismo Viral , Replicación Viral , Destete
3.
PLoS Pathog ; 16(9): e1008857, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32936838

RESUMEN

An outbreak of the hand-foot-mouth disease with severe neurological cases, mainly caused by the genotype C1 enterovirus A71 (EV-A71), occurred in Taiwan between 2018 and early 2019. In the recent decade, the most dominant EV-A71 genotypes in Taiwan were B5 and C4 but changed to C1 in 2018. Antibody-mediated immunity plays a key role in limiting the EV-A71 illness in humans. However, the level of neutralizing activities against genotype C1 virus by human polyclonal and monoclonal antibodies (MAbs) remains largely unclear. In the study, we demonstrated that that 39% (9 in 23) of post-infection sera from the genotype B5- or C4-infected patients in 2014-2017 exhibit reduced titers with the 2018-2019 genotype C1 viruses than with the earlier B5 and C4 viruses tested. This finding with polyclonal sera is confirmed with human MAbs derived from genotype B5 virus-infected individuals. The 2018-2019 genotype C1 virus is resistant to the majority of canyon-targeting human MAbs, which may be associated with the residue change near or at the bottom of the canyon region on the viral capsid. The remaining three antibodies (16-2-11B, 16-3-4D, and 17-1-12A), which target VP1 S241 on the 5-fold vertex, VP3 E81 on the 3-fold plateau and VP2 D84 on the 2-fold plateau of genotype C1 viral capsid, respectively, retained neutralizing activities with variable potencies. These neutralizing antibodies were also found to be protective against a lethal challenge of the 2018-2019 genotype C1 virus in an hSCARB2-transgenic mice model. These results indicate that the EV-A71-specific antibody response may consist of a fraction of poorly neutralizing antibodies against 2018-2019 genotype C1 viruses among a subset of previously infected individuals. Epitope mapping of protective antibodies that recognize the emerging genotype C1 virus has implications for anti-EV-A71 MAbs and the vaccine field.


Asunto(s)
Antígenos Virales/genética , Enterovirus Humano A/genética , Variación Genética , Genoma Viral , Genotipo , Enfermedad de Boca, Mano y Pie/genética , Animales , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Niño , Preescolar , Enterovirus Humano A/inmunología , Enterovirus Humano A/aislamiento & purificación , Femenino , Enfermedad de Boca, Mano y Pie/epidemiología , Enfermedad de Boca, Mano y Pie/inmunología , Humanos , Masculino , Ratones , Ratones Transgénicos , Taiwán
4.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361757

RESUMEN

Enterovirus 71 (EV71) is the major etiological agent contributing to the development of hand-foot-mouth disease (HFMD). There are not any global available vaccines or antibody drugs against EV71 released yet. In this study, we perform the virus immunization in a cost-effective and convenient approach by preparing virus particles from size exclusion and immunization of chicken. Polyclonal yolk-immunoglobulin (IgY) was simply purified from egg yolk and monoclonal single-chain variable fragments (scFv) were selected via phage display technology with two scFv libraries containing 6.0 × 106 and 1.3 × 107 transformants. Specific clones were enriched after 5 rounds of bio-panning and four identical genes were classified after the sequence analysis. Moreover, the higher mutation rates were revealed in the CDR regions, especially in the CDR3. IgY showed specific binding activities to both EV71-infected and Coxsackievirus 16-infected cell lysates and high infectivity inhibitory activity of EV71. However, while IgY detected a 37 kDa protein, the selected scFv seemingly detected higher size proteins which could be cell protein instead of EV71 proteins. Despite the highly effective chicken antibody generation, the purity of virus particles prepared by size exclusion is the limitation of this study, and further characterization should be carried out rigorously.


Asunto(s)
Enterovirus Humano A , Enterovirus , Enfermedad de Boca, Mano y Pie , Anticuerpos de Cadena Única , Animales , Virión/genética , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/metabolismo , Yema de Huevo , Pollos
5.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923724

RESUMEN

Coxsackievirus A16 (CA16) is one of the major causative agents of hand, foot, and mouth disease (HFMD). Children aged <5 years are the most affected by CA16 HFMD globally. Although clinical symptoms of CA16 infections are usually mild, severe complications, such as aseptic meningitis or even death, have been recorded. Currently, no vaccine or antiviral therapy for CA16 infection exists. Single-chain variable fragment (scFv) antibodies significantly inhibit viral infection and could be a potential treatment for controlling the infection. In this study, scFv phage display libraries were constructed from splenocytes of a laying hen immunized with CA16-infected lysate. The pComb3X vector containing the scFv genes was introduced into ER2738 Escherichia coli and rescued by helper phages to express scFv molecules. After screening with five cycles of bio-panning, an effective scFv antibody showing favorable binding activity to proteins in CA16-infected lysate on ELISA plates was selected. Importantly, the selected scFv clone showed a neutralizing capability against the CA16 virus and cross-reacted with viral proteins in EV71-infected lysate. Intriguingly, polyclonal IgY antibody not only showed binding specificity against proteins in CA16-infected lysate but also showed significant neutralization activities. Nevertheless, IgY-binding protein did not cross-react with proteins in EV71-infected lysate. These results suggest that the IgY- and scFv-binding protein antibodies provide protection against CA16 viral infection in in vitro assays and may be potential candidates for treating CA16 infection in vulnerable young children.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Pollos/inmunología , Enterovirus/inmunología , Animales , Especificidad de Anticuerpos , Línea Celular Tumoral , Humanos , Anticuerpos de Cadena Única/inmunología , Vacunas Virales/inmunología
6.
Artículo en Inglés | MEDLINE | ID: mdl-33139286

RESUMEN

We discovered that neuropilin 1 (NRP1) is a new receptor candidate to mediate enterovirus A71 (EVA71) into cells. In the engineered form as a decoy receptor, NRP1 was able to recognize and neutralize EVA71 but not enterovirus D68 or coxsackievirus B3 (CVB3). NRP1 recognizes EVA71 through a novel domain on the VP3 capsid protein. The principle in the design, engineering, and refinement of the NRP1-based decoy receptor described in this study represents a general and well-suited antiviral strategy.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enterovirus Humano A/genética , Humanos , Neuropilina-1/genética , Receptores Virales/genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-32152074

RESUMEN

In the past few decades, enterovirus A71 (EVA71) has caused devastating outbreaks in the Asia-Pacific region, resulting in serious sequelae in infected young children. No preventive or therapeutic interventions are currently available for curing EVA71 infection, highlighting a great unmet medical need for this disease. Here, we showed that one novel single-domain antibody (sdAb), F1, isolated from an immunized llama, could alleviate EVA71 infection both in vitro and in vivo We also confirmed that the sdAb clone F1 recognizes EVA71 through a novel conformational epitope comprising the highly conserved region of VP3 capsid protein by using competitive-binding and overlapping-peptide enzyme-linked immunosorbent assays (ELISAs). Because of the virion's icosahedral structure, we reasoned that adjacent epitopes must be clustered within molecular ranges that may be simultaneously bound by an engineered antibody with multiple valency. Therefore, two single-domain binding modules (F1) were fused to generate an sdAb-in-tandem design so that the capture of viral antigens could be further increased by valency effects. We showed that the tetravalent construct F1×F1-hFc, containing two sdAb-in-tandem on a fragment crystallizable (Fc) scaffold, exhibits more potent neutralization activity against EVA71 than does the bivalent sdAb F1-hFc by at least 5.8-fold. We also demonstrated that, using a human scavenger receptor class B member 2 (hSCARB2) transgenic mouse model, a half dose of the F1×F1-hFc provided better protection against EVA71 infection than did the F1-hFc. Thus, our study furnishes important insights into multivalent sdAb engineering against viral infection and provides a novel strategic deployment approach for preparedness of emerging infectious diseases such as EVA71.


Asunto(s)
Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/inmunología , Enterovirus Humano A/inmunología , Infecciones por Enterovirus/terapia , Anticuerpos de Dominio Único/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/farmacología , Antígenos Virales/inmunología , Camélidos del Nuevo Mundo , Línea Celular Tumoral , Infecciones por Enterovirus/inmunología , Infecciones por Enterovirus/prevención & control , Ensayo de Inmunoadsorción Enzimática , Epítopos/inmunología , Ratones , Ratones Transgénicos , Anticuerpos de Dominio Único/farmacología
8.
Artículo en Inglés | MEDLINE | ID: mdl-32669265

RESUMEN

The coronavirus (CoV) disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is a health threat worldwide. Viral main protease (Mpro, also called 3C-like protease [3CLpro]) is a therapeutic target for drug discovery. Herein, we report that GC376, a broad-spectrum inhibitor targeting Mpro in the picornavirus-like supercluster, is a potent inhibitor for the Mpro encoded by SARS-CoV-2, with a half-maximum inhibitory concentration (IC50) of 26.4 ± 1.1 nM. In this study, we also show that GC376 inhibits SARS-CoV-2 replication with a half-maximum effective concentration (EC50) of 0.91 ± 0.03 µM. Only a small portion of SARS-CoV-2 Mpro was covalently modified in the excess of GC376 as evaluated by mass spectrometry analysis, indicating that improved inhibitors are needed. Subsequently, molecular docking analysis revealed that the recognition and binding groups of GC376 within the active site of SARS-CoV-2 Mpro provide important new information for the optimization of GC376. Given that sufficient safety and efficacy data are available for GC376 as an investigational veterinary drug, expedited development of GC376, or its optimized analogues, for treatment of SARS-CoV-2 infection in human is recommended.


Asunto(s)
Antivirales/química , Betacoronavirus/efectos de los fármacos , Cisteína Endopeptidasas/química , Inhibidores de Proteasas/química , Pirrolidinas/química , Proteínas no Estructurales Virales/química , Secuencias de Aminoácidos , Animales , Antivirales/farmacología , Betacoronavirus/patogenicidad , Dominio Catalítico , Chlorocebus aethiops , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Expresión Génica , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Pirrolidinas/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2 , Ácidos Sulfónicos , Termodinámica , Células Vero , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
9.
J Clin Microbiol ; 58(8)2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32518072

RESUMEN

Real-time reverse transcription-PCR (RT-PCR) is currently the most sensitive method to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19). However, the correlation between detectable viral RNA and culturable virus in clinical specimens remains unclear. Here, we performed virus culture for 60 specimens that were confirmed to be positive for SARS-CoV-2 RNA by real-time RT-PCR. The virus could be successfully isolated from 12 throat and nine nasopharyngeal swabs and two sputum specimens. The lowest copy number required for virus isolation was determined to be 5.4, 6.0, and 5.7 log10 genome copies/ml sample for detecting the nsp12, E, and N genes, respectively. We further examined the correlation of genome copy number and virus isolation in different regions of the viral genome, demonstrating that culturable specimens are characterized by high copy numbers with a linear correlation observed between copy numbers of amplicons targeting structural and nonstructural regions. Overall, these results indicate that in addition to the copy number, the integrity of the viral genome should be considered when evaluating the infectivity of clinical SARS-CoV-2 specimens.


Asunto(s)
Betacoronavirus/crecimiento & desarrollo , Betacoronavirus/aislamiento & purificación , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Neumonía Viral/diagnóstico , Neumonía Viral/virología , Cultivo de Virus/métodos , Betacoronavirus/genética , COVID-19 , Prueba de COVID-19 , Vacunas contra la COVID-19 , Correlación de Datos , Humanos , Nasofaringe/virología , Pandemias , Faringe/virología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , SARS-CoV-2
10.
RNA Biol ; 17(4): 608-622, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32009553

RESUMEN

Enteroviruses, which may cause neurological complications, have become a public health threat worldwide in recent years. Interactions between cellular proteins and enteroviral proteins could interfere with cellular biological processes to facilitate viral replication in infected cells. Enteroviral RNA-dependent RNA polymerase (RdRP), known as 3D protein, mainly functions as a replicase for viral RNA synthesis in infected cells. However, the 3D protein encoded by enterovirus A71 (EV-A71) could also interact with several cellular proteins to regulate cellular events and responses during infection. To globally investigate the functions of the EV-A71 3D protein in regulating biological processes in host cells, we performed immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify host proteins that may associate with the 3D protein. We found that the 3D protein interacts with factors involved in translation-related biological processes, including ribosomal proteins. In addition, polysome profiling analysis showed that the 3D protein cosediments with small and large subunits of ribosomes. We further discovered that the EV-A71 3D protein could enhance EV-A71 internal ribosome entry site (IRES)-dependent translation as well as cap-dependent translation. Collectively, this research demonstrated that the RNA polymerase encoded by EV-A71 could join a functional ribosomal complex and positively regulate viral and host translation.


Asunto(s)
Enterovirus Humano A/enzimología , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Línea Celular , Cromatografía Liquida , Células HEK293 , Células HeLa , Humanos , Sitios Internos de Entrada al Ribosoma , Biosíntesis de Proteínas , Espectrometría de Masas en Tándem , Proteínas Virales/metabolismo
11.
PLoS Pathog ; 13(5): e1006375, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28545059

RESUMEN

Positive-strand RNA virus infections can induce the stress-related unfolded protein response (UPR) in host cells. This study found that enterovirus A71 (EVA71) utilizes host UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1), a key endoplasmic reticulum protein (ER) involved in UPR, to enhance viral replication and virulence. EVA71 forms replication complexes (RCs) on cellular membranes that contain a mix of host and viral proteins to facilitate viral replication, but the components and processes involved in the assembly and function of RCs are not fully understood. Using EVA71 as a model, this study found that host UGGT1 and viral 3D polymerase co-precipitate along with other factors on membranous replication complexes to enhance viral replication. Increased UGGT1 levels elevated viral growth rates, while viral pathogenicity was observed to be lower in heterozygous knockout mice (Uggt1 +/- mice). These findings provide important insight on the role of UPR and host UGGT1 in regulating RNA virus replication and pathogenicity.


Asunto(s)
Enterovirus Humano A/genética , Glucosiltransferasas/genética , Replicación Viral/genética , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Retículo Endoplásmico/enzimología , Enterovirus Humano A/patogenicidad , Enterovirus Humano A/fisiología , Glucosiltransferasas/metabolismo , Interacciones Huésped-Patógeno , Ratones , Ratones Noqueados , ARN Viral/análisis , ARN Viral/genética , Respuesta de Proteína Desplegada , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virulencia/genética
12.
PLoS Pathog ; 10(6): e1004199, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24968230

RESUMEN

The primary role of cytoplasmic viral RNA-dependent RNA polymerase (RdRp) is viral genome replication in the cellular cytoplasm. However, picornaviral RdRp denoted 3D polymerase (3D(pol)) also enters the host nucleus, where its function remains unclear. In this study, we describe a novel mechanism of viral attack in which 3D(pol) enters the nucleus through the nuclear localization signal (NLS) and targets the pre-mRNA processing factor 8 (Prp8) to block pre-mRNA splicing and mRNA synthesis. The fingers domain of 3D(pol) associates with the C-terminal region of Prp8, which contains the Jab1/MPN domain, and interferes in the second catalytic step, resulting in the accumulation of the lariat form of the splicing intermediate. Endogenous pre-mRNAs trapped by the Prp8-3D(pol) complex in enterovirus-infected cells were identified and classed into groups associated with cell growth, proliferation, and differentiation. Our results suggest that picornaviral RdRp disrupts pre-mRNA splicing processes, that differs from viral protease shutting off cellular transcription and translation which contributes to the pathogenesis of viral infection.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/enzimología , Enterovirus Humano A/metabolismo , Empalme del ARN , Proteínas de Unión al ARN/antagonistas & inhibidores , ADN Polimerasa Dirigida por ARN/metabolismo , Proteínas Virales/metabolismo , Línea Celular , Núcleo Celular/virología , Citoplasma/metabolismo , Citoplasma/virología , Enterovirus/metabolismo , Enterovirus/patogenicidad , Enterovirus Humano A/patogenicidad , Humanos , Señales de Localización Nuclear , Poliovirus/metabolismo , Poliovirus/patogenicidad , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas , Precursores del ARN/antagonistas & inhibidores , Precursores del ARN/metabolismo , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , ADN Polimerasa Dirigida por ARN/química , ADN Polimerasa Dirigida por ARN/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rhinovirus/metabolismo , Rhinovirus/patogenicidad , Especificidad de la Especie , Transcripción Genética , Carga Viral , Proteínas Virales/química , Proteínas Virales/genética , Virulencia
13.
Nucleic Acids Res ; 42(20): 12789-805, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25352551

RESUMEN

The roles of virus-derived small RNAs (vsRNAs) have been studied in plants and insects. However, the generation and function of small RNAs from cytoplasmic RNA viruses in mammalian cells remain unexplored. This study describes four vsRNAs that were detected in enterovirus 71-infected cells using next-generation sequencing and northern blots. Viral infection produced substantial levels (>10(5) copy numbers per cell) of vsRNA1, one of the four vsRNAs. We also demonstrated that Dicer is involved in vsRNA1 generation in infected cells. vsRNA1 overexpression inhibited viral translation and internal ribosomal entry site (IRES) activity in infected cells. Conversely, blocking vsRNA1 enhanced viral yield and viral protein synthesis. We also present evidence that vsRNA1 targets stem-loop II of the viral 5' untranslated region and inhibits the activity of the IRES through this sequence-specific targeting. Our study demonstrates the ability of a cytoplasmic RNA virus to generate functional vsRNA in mammalian cells. In addition, we also demonstrate a potential novel mechanism for a positive-stranded RNA virus to regulate viral translation: generating a vsRNA that targets the IRES.


Asunto(s)
Regiones no Traducidas 5' , Enterovirus Humano A/genética , Regulación Viral de la Expresión Génica , Biosíntesis de Proteínas , ARN Pequeño no Traducido/metabolismo , ARN Viral/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Humanos , Ribonucleasa III/metabolismo , Proteínas Virales/biosíntesis
14.
J Infect Dis ; 208(11): 1898-905, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23901080

RESUMEN

BACKGROUND: Reassortment within polymerase genes causes changes in the pathogenicity of influenza A viruses. We previously reported that the 2009 pH1N1 PA enhanced the pathogenicity of seasonal H1N1. We examined the effects of the PA gene from the HPAI H5N1 following its introduction into currently circulating seasonal influenza viruses. METHODS: To evaluate the role of H5N1 PA in altering the virulence of seasonal influenza viruses, we generated a recombinant seasonal H3N2 (3446) that expressed the H5N1 PA protein (VPA) and evaluated the RNP activity, growth kinetics, and pathogenicity of the reassortant virus in mice. RESULTS: Compared with the wild-type 3446 virus, the substitution of the H5N1 PA gene into the 3446 virus (VPA/3446) resulted in increased RNP activity and an increased replication rate in A549 cells. The recombinant VPA/3446 virus also caused more severe pneumonia in Casp 1(-/-) mice than in IL1ß(-/-) and wild-type B6 mice. CONCLUSIONS: Although the PA from H5N1 is incidentally compatible with a seasonal H3N2 backbone, the H5N1 PA affected the virulence of seasonal H3N2, particularly in inflammasome-related innate immunity deficient mice. These findings highlight the importance of monitoring PA reassortment in seasonal flu, and confirm the role of the Caspase-1 gene in influenza pathogenesis.


Asunto(s)
Caspasa 1/metabolismo , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/virología , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Perros , Ingeniería Genética , Humanos , Inmunidad Innata , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/inmunología , ARN Polimerasa Dependiente del ARN/metabolismo , Virus Reordenados , Organismos Libres de Patógenos Específicos , Proteínas Virales/metabolismo , Virulencia , Replicación Viral
15.
Biomed J ; : 100715, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38492637

RESUMEN

Enterovirus A71 (EV-A71) infections pose a significant public health concern in the Asia-Pacific region. EV-A71 is primarily responsible for causing hand, foot, and mouth disease (HFMD) in children. However, this virus can also lead to severe and potentially fatal neurological consequences in affected individuals. This review aims to provide a comprehensive understanding of the molecular virology, epidemiology, and recombination events associated with EV-A71. The literature extensively covers the clinical manifestations and neurological symptoms that accompany EV-A71 infections. One of the complications explored in this review is brainstem encephalitis, which can arise as a result of EV-A71 infections. Brainstem encephalitis refers to inflammation of the brainstem, a critical region responsible for various bodily functions. The review examines the underlying mechanisms, diagnostic criteria, treatment options, and prognosis for central nervous system infections involving EV-A71. Neurological complications associated with EV-A71 infections are diverse and can have severe consequences. These complications may include aseptic meningitis, acute flaccid paralysis, and acute transverse myelitis. The review delves into the pathophysiology of these complications, shedding light on the molecular mechanisms through which EV-A71 affects the central nervous system. Accurate diagnosis of EV-A71 infections is crucial for appropriate management and treatment. Treatment options for EV-A71 infections primarily focus on supportive care, as there are currently no specific antiviral drugs available for this virus. The review highlights the importance of managing symptoms, such as fever, dehydration, and pain relief, to alleviate the burden on affected individuals. Prognosis for individuals with central nervous system (CNS) infections involving EV-A71 can vary depending on the severity of the complications. The review provides insights into the long-term outcomes and potential neurological sequelae associated with EV-A71 infections. In conclusion, EV-A71 infections have emerged as a major public health concern in the Asia-Pacific region. This review aims to enhance our understanding of the molecular virology, epidemiology, and neurological complications associated with EV-A71. By examining the underlying mechanisms, diagnostic criteria, treatment options, and prognosis, this review contributes to the development of effective strategies for the prevention, diagnosis, and management of EV-A71 infections. The paper presents a comprehensive analysis of worldwide data pertaining to outbreaks of EV-A71 and HFMD. The subsequent discourse delves into the advancement and strategic formulation pertaining to the creation of vaccines targeting EV-A71. In summary, this study provides a comprehensive examination of the potential obstacles and considerations involved in the management and treatment of EV-A71 infections. Additionally, it proposes suggestions for future research and development endeavors with the objective of formulating efficacious treatment approaches for this viral infection.

16.
Nucleic Acids Res ; 39(22): 9633-48, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21880596

RESUMEN

Enterovirus 71 (EV71) is associated with severe neurological disorders in children, and has been implicated as the infectious agent in several large-scale outbreaks with mortalities. Upon infection, the viral RNA is translated in a cap-independent manner to yield a large polyprotein precursor. This mechanism relies on the presence of an internal ribosome entry site (IRES) element within the 5'-untranslated region. Virus-host interactions in EV71-infected cells are crucial in assisting this process. We identified a novel positive IRES trans-acting factor, far upstream element binding protein 1 (FBP1). Using binding assays, we mapped the RNA determinants within the EV71 IRES responsible for FBP1 binding and mapped the protein domains involved in this interaction. We also demonstrated that during EV71 infection, the nuclear protein FBP1 is enriched in cytoplasm where viral replication occurs. Moreover, we showed that FBP1 acts as a positive regulator of EV71 replication by competing with negative ITAF for EV71 IRES binding. These new findings may provide a route to new anti-viral therapy.


Asunto(s)
Regiones no Traducidas 5' , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Enterovirus Humano A/genética , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Animales , Unión Competitiva , Línea Celular , Citoplasma/metabolismo , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/química , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/química , Enterovirus Humano A/crecimiento & desarrollo , Enterovirus Humano A/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Dominios y Motivos de Interacción de Proteínas , ARN Viral/química , ARN Viral/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/química , Transactivadores/metabolismo , Replicación Viral
17.
Microbes Infect ; 25(1-2): 105044, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36096357

RESUMEN

The World Health Organization has highlighted the importance of an international standard (IS) for severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) neutralizing antibody titer detection to calibrate diagnostic techniques. We applied an IS to calibrate neutralizing antibody titers (NTs) (international units/mL) in response to coronavirus disease 2019 (COVID-19) vaccination. Moreover, the association between different factors and neutralizing antibodies was analyzed. A total of 1667 serum samples were collected from participants receiving different COVID-19 vaccines. Antibody titers were determined by a microneutralization assay using live viruses in a biosafety level 3 (BSL-3) laboratory and a commercial serological MeDiPro kit. The titer determined using the MeDiPro kit was highly correlated with the NT determined using live viruses and calibrated using IS. Fever and antipyretic analgesic treatment were related to neutralizing antibody responses in ChAdOx1-S and BNT162b2 vaccinations. Individuals with diabetes showed a low NT elicited by MVC-COV1901. Individuals with hypertension receiving the BNT162b2 vaccine had lower NTs than those without hypertension. Our study provided the international unit (IU) values of NTs in vaccinated individuals for the development of vaccines and implementation of non-inferiority trials. Correlation of the influencing factors with NTs can provide an indicator for selecting COVID-19 vaccines based on personal attributes.


Asunto(s)
COVID-19 , Hipertensión , Humanos , Vacunas contra la COVID-19 , Vacuna BNT162 , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos Neutralizantes , Vacunación , Anticuerpos Antivirales
18.
Viruses ; 14(7)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35891540

RESUMEN

We aimed to review the existing literature on the different types of neutralization assays and international standards for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We comprehensively summarized the serological assays for detecting neutralizing antibodies against SARS-CoV-2 and demonstrated the importance of an international standard for calibrating the measurement of neutralizing antibodies. Following the coronavirus disease outbreak in December 2019, there was an urgent demand to detect neutralizing antibodies in patients or vaccinated people to monitor disease outcomes and determine vaccine efficacy. Therefore, many approaches were developed to detect neutralizing antibodies against SARS-CoV-2, such as microneutralization assay, SARS-CoV-2 pseudotype virus assay, enzyme-linked immunosorbent assay (ELISA), and rapid lateral flow assay. Given the many types of serological assays for quantifying the neutralizing antibody titer, the comparison of different assay results is a challenge. In 2020, the World Health Organization proposed the first international standard as a common unit to define neutralizing antibody titer and antibody responses against SARS-CoV-2. These standards are useful for comparing the results of different assays and laboratories.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/diagnóstico , Ensayo de Inmunoadsorción Enzimática , Humanos , Pruebas de Neutralización/métodos , Glicoproteína de la Espiga del Coronavirus
19.
mBio ; 13(1): e0271721, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35038927

RESUMEN

Enterovirus infections can cause severe complications, such as poliomyelitis, encephalitis, myocarditis, meningitis, neurological pulmonary edema, and even death. Here, we used genome-wide CRISPR screens to gain new insight into the mechanism by which enteroviruses co-opt host pathways to potentiate replication and propagation. We found that acyl-coenzyme A synthetase long-chain family member 4 (ACSL4) is involved in viral replication organelle formation. ACSL4 is a key component of ferroptosis, an iron-dependent, nonapoptotic programmed cell death. Our results indicated that enteroviruses and coronaviruses can induce ferroptosis via ACSL4. Most importantly, ferroptosis inhibitors, including two FDA-approved drugs, rosiglitazone (ROSI; ACSL4 inhibitor) and pioglitazone (PIO; ACSL4 inhibitor), decreased the viral load of human enteroviruses and coronaviruses, suggesting that ACSL4 is a target for counteracting viral infection. IMPORTANCE We provide the first evidence for the role of ACSL4 in enterovirus replication organelle formation. Moreover, both enteroviruses and coronaviruses induce ferroptosis via ACSL4. These findings establish a novel regulatory mechanism for viral replication. The inhibition of ACSL4 by ferroptosis inhibitors can reduce viral yields of enteroviruses and coronaviruses, including SARS-CoV-2, implying that ACSL4-mediated ferroptosis is a promising therapeutic target for viral diseases.


Asunto(s)
COVID-19 , Infecciones por Enterovirus , Enterovirus , Ferroptosis , Humanos , Coenzima A Ligasas/metabolismo , SARS-CoV-2/metabolismo , Replicación Viral , Orgánulos/metabolismo
20.
mSphere ; 7(1): e0088321, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35107336

RESUMEN

Considering the urgent demand for faster methods to quantify neutralizing antibody titers in patients with coronavirus (CoV) disease 2019 (COVID-19), developing an analytical model or method to replace the conventional virus neutralization test (NT) is essential. Moreover, a "COVID-19 immunity passport" is currently being proposed as a certification for people who travel internationally. Therefore, an enzyme-linked immunosorbent assay (ELISA) was designed to detect severe acute respiratory syndrome CoV 2 (SARS-CoV-2)-neutralizing antibodies in serum, which is based on the binding affinity of SARS-CoV-2 viral spike protein 1 (S1) and the viral spike protein receptor-binding domain (RBD) to antibodies. The RBD is considered the major binding region of neutralizing antibodies. Furthermore, S1 covers the RBD and several other regions, which are also important for neutralizing antibody binding. In this study, we assessed 144 clinical specimens, including those from patients with PCR-confirmed SARS-CoV-2 infections and healthy donors, using both the NT and ELISA. The ELISA results analyzed by spline regression and the two-variable generalized additive model precisely reflected the NT value, and the correlation between predicted and actual NT values was as high as 0.917. Therefore, our method serves as a surrogate to quantify neutralizing antibody titer. The analytic method and platform used in this study present a new perspective for serological testing of SARS-CoV-2 infection and have clinical potential to assess vaccine efficacy. IMPORTANCE Herein, we present a new approach for serological testing for SARS-CoV-2 antibodies using innovative laboratory methods that demonstrate a combination of biology and mathematics. The traditional virus neutralization test is the gold standard method; however, it is time-consuming and poses a risk to medical personnel. Thus, there is a demand for methods that rapidly quantify neutralizing antibody titers in patients with COVID-19 or examine vaccine efficacy at a biosafety level 2 containment facility. Therefore, we used a two-variable generalized additive model to analyze the results of the enzyme-linked immunosorbent assay and found the method to serve as a surrogate to quantify neutralizing antibody titers. This methodology has potential for clinical use in assessing vaccine efficacy.


Asunto(s)
Anticuerpos Neutralizantes/sangre , COVID-19/inmunología , Ensayo de Inmunoadsorción Enzimática , Modelos Inmunológicos , Modelos Estadísticos , Pruebas de Neutralización/métodos , SARS-CoV-2/inmunología , Biomarcadores/sangre , COVID-19/sangre , COVID-19/diagnóstico , Estudios de Casos y Controles , Humanos , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA