RESUMEN
Worldwide, osteoarthritis (OA) is regarded as the most widespread, distressing, and limiting chronic disease that affects degenerative joints. Currently, there is no treatment available to modify the progression of OA. The pathogenesis of OA is significantly linked with oxidative stress and pyroptosis. Astaxanthin (Ast) is a natural ketocarotenoid pigment with potent antioxidant activity and is shown to effectively alleviate cartilage damage in OA. However, its bioavailability is greatly limited due to poor water solubility, high sensitivity to light, temperature, and pH. In this study, Ast-loaded tetrahedral framework nucleic acids (tFNAs) or tFNA/Ast complexes (TAC) for Ast delivery are developed. Compared with free Ast and tFNA alone, TAC exhibits improved drug stability and cellular uptake. Most importantly, TAC effectively protects chondrocytes against oxidative stress-induced pyroptosis while promoting extracellular matrix anabolism by chondrocytes, and ultimately alleviates cartilage damage in a mouse destabilization of the medial meniscus (DMM) model. Thus, TAC holds great promise for the treatment of OA patients.
RESUMEN
NK group 2, member D (NKG2D) is one of the most critical activating receptors expressed by natural killer (NK) cells. There is growing evidence that acute myeloid leukemia (AML) cells may evade NK cell-mediated cell lysis by expressing low or no ligands for NKG2D (NKG2D-Ls). We hypothesized that CCAAT/enhancer-binding protein α (C/EBPα), one of the most studied lineage-specific transcription factors in hematopoiesis, might influence the expression of NKG2D-Ls. To test this hypothesis, we first examined the endogenous expression of wild-type C/EBPα (C/EBPα-p42) in human AML cell lines and demonstrated that its expression level was highly relevant to the sensitivity of AML cells to NK cell cytotoxicity. Induction of C/EBPα-p42 in the low endogenous CEBPA-expressing AML cell line increased the sensitivity to NK-induced lysis. Moreover, decreased expression of C/EBPα-p42 by RNA interference in AML cells abrogated NK-mediated cytotoxicity. We further showed that the increase in NK susceptibility caused by C/EBPα-p42 occurred through up-regulation of the NKG2D-Ls ULBP2/5/6 in AML cells. More importantly, chromatin immunoprecipitation (ChIP) coupled with high-throughput sequencing captured C/EBPα motif signatures at the enhancer regions of the ULBP 2/5/6 genes. Whilst, the AML-associated C/EBPα C-terminal mutant and N-terminal truncated mutant (C/EBPα-p30) diminished ULBP2/5/6 transcription. Finally, we identified that histone demethylase lysine-specific demethylase 1 (LSD1) inhibition can restore the expression of ULBPs via induction of CEBPA expression in AML cells, which may represent a novel therapeutic strategy for CEBPA-mutated AML. Abbreviations: C/EBPα: CCAAT/enhancer-binding protein α; TF: Transcription factor; AML: Acute myeloid leukemia; TAD: Transactivation domain; FS: Frameshift; NK: Natural killer; NKG2D: NK group 2, member D; NKG2D-Ls: Ligands for NKG2D; MHC: Major histocompatibility complex; MICA: MHC class I-related chain A; ULBP: UL16-binding protein; STAT3: Signal transducer and activator of transcription 3; LSD1: Lysine-specific demethylase 1; Ab: Antibody; PBMC: Peripheral blood mononuclear cell; PBS: Phosphate-buffered saline; CFSE: Carboxyfluorescein diacetate succinimidyl ester; PI: Propidium iodide; shRNA: Short hairpin RNA; ChIP: Chromatin immunoprecipitation; BM: Binding motif; HCNE: Highly conserved noncoding element; TSS: Transcription start site; HMA: Hypomethylating agent; AZA: Azacitidine/5-azacytidine; DAC: Decitabine/5-aza-29-deoxycytidine; 2-PCPA: Tranylcypromine; RBP: RNA-binding protein; MSI2: MUSASHI-2; HDACi: Inhibitor of histone deacetylases; VPA: Valproate; DNMTi: DNA methyl transferase inhibitor; SCLC: Small cell lung cancer.