Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Funct Integr Genomics ; 24(1): 26, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329581

RESUMEN

The medicinal herb Artemisia annua L. is prized for its capacity to generate artemisinin, which is used to cure malaria. Potentially influencing the biomass and secondary metabolite synthesis of A. annua is plant nutrition, particularly phosphorus (P). However, most soil P exist as insoluble inorganic and organic phosphates, which results to low P availability limiting plant growth and development. Although plants have developed several adaptation strategies to low P levels, genetics and metabolic responses to P status remain largely unknown. In a controlled greenhouse experiment, the sparingly soluble P form, hydroxyapatite (Ca5OH(PO4)3/CaP) was used to simulate calcareous soils with low P availability. In contrast, the soluble P form KH2PO4/KP was used as a control. A. annua's morphological traits, growth, and artemisinin concentration were determined, and RNA sequencing was used to identify the differentially expressed genes (DEGs) under two different P forms. Total biomass, plant height, leaf number, and stem diameter, as well as leaf area, decreased by 64.83%, 27.49%, 30.47%, 38.70%, and 54.64% in CaP compared to KP; however, LC-MS tests showed an outstanding 37.97% rise in artemisinin content per unit biomass in CaP contrary to KP. Transcriptome analysis showed 2015 DEGs (1084 up-regulated and 931 down-regulated) between two P forms, including 39 transcription factor (TF) families. Further analysis showed that DEGs were mainly enriched in carbohydrate metabolism, secondary metabolites biosynthesis, enzyme catalytic activity, signal transduction, and so on, such as tricarboxylic acid (TCA) cycle, glycolysis, starch and sucrose metabolism, flavonoid biosynthesis, P metabolism, and plant hormone signal transduction. Meanwhile, several artemisinin biosynthesis genes were up-regulated, including DXS, GPPS, GGPS, MVD, and ALDH, potentially increasing artemisinin accumulation. Furthermore, 21 TF families, including WRKY, MYB, bHLH, and ERF, were up-regulated in reaction to CaP, confirming their importance in P absorption, internal P cycling, and artemisinin biosynthesis regulation. Our results will enable us to comprehend how low P availability impacts the parallel transcriptional control of plant development, growth, and artemisinin production in A. annua. This study could lay the groundwork for future research into the molecular mechanisms underlying A. annua's low P adaptation.


Asunto(s)
Artemisia annua , Artemisininas , Artemisia annua/genética , Fertilizantes , Perfilación de la Expresión Génica , Lagos , Fósforo
2.
Chemistry ; 30(2): e202302934, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37842799

RESUMEN

It is highly challenging to activate the basal plane and minimize the π-π stacking of MoS2 sheets, thus enhancing its catalytic performance. Here, we display an approach for making well-dispersed MoS2 . By using the N-doped multi-walled carbon nanotubes (NMWCNTs) as an isolation unit, the aggregation of MoS2 sheets was effectively reduced, favoring the dispersion of Pt nanoparticles (noted as Pt/NMWCNTs-isolated-MoS2 ). Excellent bifunctional catalytic performance for methanol oxidation and oxygen reduction reaction (MOR/ORR) were demonstrated by the produced Pt/NMWCNTs-isolated-MoS2 . In comparison to Pt nanoparticles supported on MoS2 (Pt/MoS2 ), the MOR activity (2314.14 mA mgpt -1 ) and stability (317.69 mA mgpt -1 after 2 h of operation) on Pt/NMWCNTs-isolatedMoS2 were 24 and 232 times higher, respectively. As for ORR, Pt/NMWCNTs-isolated-MoS2 holds large half-wave potential (0.88 V) and high stability (92.71 % after 22 h of operation). This work presents a tactic for activating the basal planes and reducing the π-π stacking of 2D materials to satisfy their applications in electrocatalysis. In addition, the proposed sheet-isolation method can be used for fabricating other 2D materials to promote the dispersion of nanoparticles, which assist its application in other fields of energy as well as the environment.

3.
Plant Dis ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853338

RESUMEN

Polygonatum kingianum Coll. et Hemsl (Huangjing), which belongs to the family Asparagaceae, is a perennial traditional Chinese herb with homologous medicinal and edible value (Liu et al., 2021). Huangjing is known to promote blood circulation; it has anti-inflammatory properties, increases immunity, and provides hypoglycemic treatments (Ma et al., 2019). Root rot-infected P. kingianum exhibited withering yellow leaves and stems, rhizome rot, slowed growth, and plant death. In recent years, with an average incidence of up to 45%, the spread of HJ root rot (rhizome and stem bases) has resulted in a significant reduction in the quality and up to 63% reduction in the yields of Sichuan Junlian (104.5°E, 28.2°N) and Guizhou Zhunyi (107.0°E, 27.7°N). After collecting the diseased samples, we used the tissue isolation method to isolate the pathogenic fungi (Wu et al., 2020). Four fungal isolates associated with root rot were obtained: HJ-G2 (two strains), HJ-G3 (one strain), HJ-G4 (one strain), and HJ-G6 (two strains), of which HJ-G2 and HJ-G6 were the dominant species. To determine pathogenicity of each strain, tests were conducted by wounding rhizomes wth an inoculation needle and the pathogen strain was inoculated onto the wound and symptoms observed. The results reveal that HJ-G6 exhibited the strongest pathogenicity against P. kingianum (Figure 1). The HJ-G6 colonies were black, grew rapidly, and produced a large number of spores (Figure 1). A spherical apical sac (conidial head) is formed at the top with two palisades of cells, metulae and phialides, which are shaped radially and produce a large number of spores with 2-5 um in diameter (Figure 2). Morphological observations revealed that the isolate was consistent with Aspergillus awamori (Naher et al., 2021). To further confirm the fungal species, the ribosomal internal transcribed spacer (ITS), ß-tubulin (TUB), and elongation factor 1-alpha (EF-1a) gene regions were amplified with ITS1/ITS4, Bt2a/ Bt2b, and EF1/EF2. Primer and PCR amplification were performed as previously described (Paul et al., 2017). The sequences were compared with those obtained from GenBank. The ITS sequences (GenBank accession number OR682143) of the isolates (HJ-G6) were 100% identical to those of the strain PANCOM10 (GenBank accession number MT007535.1) of Aspergillus awamori. The EF-1a sequences (GenBank accession OR752352) of the isolates (HJ-G6) were 98% identical with strain ITEM 4777 (GenBank accession FN665402.1) of Aspergillus awamori. The TUB sequences (GenBank accession number OR752351) of the isolate (HJ-G6) were 100% identical with strain AF158 (GenBank accession MH781275.1) of Aspergillus awamori. Three maximum likelihood trees were constructed using MEGA v5.0 (Kumar et al., 2018) based on the sequences (ITS, TUB, and EF-1a) of the HJ-G6 strain and that of Aspergillus spp. previously deposited in GenBank (Paul et al., 2017). Phylogenetic analysis showed that HJ-G6 belonged to the Aspergillus awamori clade (Figure 3). Combined with morphological analysis and DNA sequencing, HJ-G6 was identified as Aspergillus awamori. To verify pathogenicity, P. kingianum roots were inoculated with the colonized agar discs of the isolates. P. kingianum plants inoculated with uncolonized agar discs were used as controls. After inoculation, P. kingianum roots were moved to the inoculation chamber under high humidity at 28 °C for 1 d and then transferred to a greenhouse. Previous studies have reported that Fusarium sp. are root rot pathogens in the rhizomes of medicinal plants (Pang et al., 2022; Song et al., 2023). In this study, HJ-G2, HJ-G3, and HJ-G4 were used as the positive controls. Typical symptoms of root rot appeared 3 days after inoculation and were similar to those observed in the field, whereas the control plants remained symptomless. According to the results of the inoculation experiment, the pathogenicity of Aspergillus awamori to P. kingianum root rot was significantly stronger than that of Fusarium (Figure 1). The pathogen was isolated from the rotting root of P. kingianum and the ITS region was sequenced again. Alignment analysis of the ITS sequences revealed that the causal agents were consistent with those of the original isolates. These studies fulfill Koch's postulates. As far as we know, this is the first report of Aspergillus awamori causing root rot in P. kingianum.

4.
Funct Integr Genomics ; 23(2): 141, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37118364

RESUMEN

Artemisia annua L. is a medicinal plant valued for its ability to produce artemisinin, a molecule used to treat malaria. Plant nutrients, especially phosphorus (P), can potentially influence plant biomass and secondary metabolite production. Our work aimed to explore the genetic and metabolic response of A. annua to hardly soluble aluminum phosphate (AlPO4, AlP), using soluble monopotassium phosphate (KH2PO4, KP) as a control. Liquid chromatography-mass spectrometry (LC-MS) was used to analyze artemisinin. RNA sequencing, gene ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were applied to analyze the differentially expressed genes (DEGs) under poor P conditions. Results showed a significant reduction in plant growth parameters, such as plant height, stem diameter, number of leaves, leaf areas, and total biomass of A. annua. Conversely, LC-MS analysis revealed a significant increase in artemisinin concentration under the AlP compared to the KP. Transcriptome analysis revealed 762 differentially expressed genes (DEGs) between the AlP and the KP. GH3, SAUR, CRE1, and PYL, all involved in plant hormone signal transduction, showed differential expression. Furthermore, despite the downregulation of HMGR in the artemisinin biosynthesis pathway, the majority of genes (ACAT, FPS, CYP71AV1, and ALDH1) were upregulated, resulting in increased artemisinin accumulation in the AlP. In addition, 12 transcription factors, including GATA and MYB, were upregulated in response to AlP, confirming their importance in regulating artemisinin biosynthesis. Overall, our findings could contribute to a better understanding the parallel transcriptional regulation of plant hormone transduction and artemisinin biosynthesis in A. annua L. in response to hardly soluble phosphorus fertilizer.


Asunto(s)
Artemisia annua , Artemisininas , Artemisia annua/genética , Artemisia annua/química , Artemisia annua/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Artemisininas/química , Artemisininas/metabolismo , Fosfatos/metabolismo , Análisis de Secuencia de ARN , Fósforo/metabolismo
5.
J Med Virol ; 95(1): e28163, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36127294

RESUMEN

Little information is available for antibody levels against SARS-CoV-2 variants of concern induced by Omicron breakthrough infection and a third booster with an inactivated vaccine (InV) or Ad5-nCoV in people with completion of two InV doses. Plasma was collected from InV pre-vaccinated Omicron-infected patients (OIPs), unvaccinated OIPs between 0 and 22 days, and healthy donors (HDs) 14 days or 6 months after the second doses of an InV and 14 days after a homogenous booster or heterologous booster of Ad5-nCoV. Anti-Wuhan-, Anti-Delta-, and Anti-Omicron-receptor binding domain (RBD)-IgG titers were detected using enzyme-linked immunosorbent assay. InV pre-vaccinated OIPs had higher anti-Wuhan-, anti-Delta-, and anti-Omicron-RBD-IgG titers compared to unvaccinated OIPs. Anti-Wuhan-RBD-IgG titers sharply increased in InV pre-vaccinated OIPs 0-5 days postinfection (DPI), while the geometric mean titers (GMTs) of anti-Delta- and anti-Omicron-RBD-IgG were 3.3-fold and 12.0-fold lower. Then, the GMT of anti-Delta- and anti-Omicron-RBD-IgG increased to 35 112 and 28 186 during 11-22 DPI, about 2.6-fold and 3.2-fold lower, respectively, than the anti-Wuhan-RBD-IgG titer. The anti-Wuhan-, anti-Delta-, and anti-Omicron-RBD-IgG titers declined over time in HDs after two doses of an InV, with 25.2-fold, 5.6-fold, and 4.5-fold declination, respectively, at 6 months relative to the titers at 14 days after the second vaccination. Anti-Wuhan-, anti-Delta-, and anti-Omicron-RBD-IgG titers elicited by a heterologous Ad5-nCoV booster were significantly higher than those elicited by an InV booster, comparable to those in InV pre-vaccinated OIPs. InV and Ad5-nCoV boosters could improve humoral immunity against Omicron variants. Of these, the Ad5-nCoV booster is a better alternative.


Asunto(s)
Infección Irruptiva , COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Inmunoglobulina G , Anticuerpos Antivirales , Anticuerpos Neutralizantes
6.
Plant J ; 107(3): 698-712, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33974322

RESUMEN

The pathogen cereal cyst nematode (CCN) is deleterious to Triticeae crops and is a threat to the global crop yield. Accession no. 1 of Aegilops variabilis, a relative of Triticum aestivum (bread wheat), is highly resistant to CCN. Our previous study demonstrated that the expression of the phenylalanine ammonia lyase (PAL) gene AevPAL1 in Ae. variabilis is strongly induced by CCN. PAL, the first enzyme of phenylpropanoid metabolism, is involved in abiotic and biotic stress responses. However, its role in plant-CCN interaction remains unknown. In the present study, we proved that AevPAL1 helps to confer CCN resistance through affecting the synthesis of salicylic acid (SA) and downstream secondary metabolites. The silencing of AevPAL1 increased the incidence of CCN infection in roots and decreased the accumulation of SA and phenylalanine (Phe)-derived specialized metabolites. The exogenous pre-application of SA also improved CCN resistance. Additionally, the functions of PAL in phenylpropanoid metabolism correlated with tryptophan decarboxylase (TDC) functioning in tryptophan metabolism pathways. The silencing of either AevPAL1 or AevTDC1 exhibited a concomitant reduction in the expression of both genes and the contents of metabolites downstream of PAL and TDC. These results suggested that AevPAL1, possibly in coordination with AevTDC1, positively contributes to CCN resistance by altering the downstream secondary metabolites and SA content in Ae. variabilis. Moreover, AevPAL1 overexpression significantly enhanced CCN resistance in bread wheat and did not exhibit significant negative effects on yield-related traits, suggesting that AevPAL1 is valuable for the genetic improvement of CCN resistance in bread wheat.


Asunto(s)
Nematodos/fisiología , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Triticum/metabolismo , Triticum/parasitología , Animales , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Proteínas de Plantas/genética
7.
Biotechnol Bioeng ; 117(8): 2410-2419, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32369184

RESUMEN

Metabolic engineering of Saccharomyces cerevisiae for high-level production of aromatic chemicals has received increasing attention in recent years. Tyrosol production from glucose by S. cerevisiae is considered an environmentally sustainable and safe approach. However, the production of tyrosol and salidroside by engineered S. cerevisiae has been reported to be lower than 2 g/L to date. In this study, S. cerevisiae was engineered with a push-pull-restrain strategy to efficiently produce tyrosol and salidroside from glucose. The biosynthetic pathways of ethanol, phenylalanine, and tryptophan were restrained by disrupting PDC1, PHA2, and TRP3. Subsequently, tyrosol biosynthesis was enhanced with a metabolic pull strategy of introducing PcAAS and EcTyrAM53I/A354V . Moreover, a metabolic push strategy was implemented with the heterologous expression of phosphoketolase (Xfpk), and then erythrose 4-phosphate was synthesized simultaneously by two pathways, the Xfpk-based pathway and the pentose phosphate pathway, in S. cerevisiae. Furthermore, the heterologous expression of Xfpk alone in S. cerevisiae efficiently improved tyrosol production compared with the coexpression of Xfpk and phosphotransacetylase. Finally, the tyrosol yield increased by approximately 135-folds, compared with that of parent strain. The total amount of tyrosol and salidroside with glucose fed-batch fermentation was over 10 g/L and reached levels suitable for large-scale production.


Asunto(s)
Carbono/metabolismo , Glucósidos/metabolismo , Ingeniería Metabólica/métodos , Fenoles/metabolismo , Alcohol Feniletílico/análogos & derivados , Saccharomyces cerevisiae , Vías Biosintéticas , Fermentación , Glucosa/metabolismo , Alcohol Feniletílico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Opt Express ; 26(7): 8515-8521, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29715817

RESUMEN

We demonstrate the generation of filament array with orthogonal polarizations in air by using specifically designed wedge-type birefringent quartz plates. Experimental results show that the number of the generated filaments can be expressed as N = 2n wherenis the number of quartz plates inserted in the laser propagation path. By manipulating the optic axis of the quartz plates with respect to the polarization direction of the input laser pulse, the generated filaments can be separated into two parts with the polarization directions perpendicular with each other. The separation distance between the adjacent filaments is found to be linearly dependent on the focal length of external focusing lens. Our results provide a simple and efficient way to generate regular and reproductive femtosecond filament array in air.

9.
Diabetes Metab Res Rev ; 33(4)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27862843

RESUMEN

BACKGROUND: Neuregulin4 (Nrg4) is a novel adipokine expressed in adipose tissues, enriched in brown adipose tissue, and able to improve whole-body metabolism in rodent, thus having the potential to treat obesity-associated disorders such as diabetes. However, the association between serum Nrg4 levels and diabetes risk in human remains unclear. This study was designed to examine circulating Nrg4 levels in subjects with different glucose tolerance status. METHODS: Age-, sex-, and body mass index-matched subjects (n = 310: 83 normal glucose tolerance [NGT], 129 prediabetes, and 96 diabetes) from the Risk Evaluation of Cancers in Chinese Diabetic Individuals: A Longitudinal study (Reaction study) were included. Serum Nrg4 was measured via enzyme-linked immunosorbent assay. Basic anthropometric parameters, fasting plasma glucose and 2-hours postload plasma glucose, hemoglobin A1c , and serum lipid profile were also measured. RESULTS: The serum Nrg4 levels were higher in patients with diabetes than those with NGT and prediabetes (diabetes: 396.8[65.9, 709.4], NGT: 80.1[0, 554.1], prediabetes: 168.0[32.9, 463.9] pg/mL [median (interquartile range), both P < 0.05]). The Nrg4 concentration was correlated with fasting plasma glucose. When the top versus bottom quartiles of serum Nrg4 concentrations were compared with adjustment for age and sex, an odds ratio of 3.005 was observed in diabetes prevalence, which persisted after adjusting other potential confounding variables. Other nonglucose parameters as body mass index; waist, hip, and neck circumferences; alanine aminotransferase; triglyceride; high-density lipoprotein; uric acid; and estimated glomerular filtration rate were also correlated with serum Nrg4 (P < 0.05). CONCLUSIONS: The circulating Nrg4 level is elevated in the prediabetic and diabetic patients compared to control and is an independent risk factor associated with diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Neurregulinas/sangre , Estado Prediabético/sangre , Glucemia/metabolismo , Índice de Masa Corporal , Femenino , Prueba de Tolerancia a la Glucosa , Hemoglobina Glucada , Humanos , Lípido A/sangre , Estudios Longitudinales , Masculino , Persona de Mediana Edad
11.
Med Sci Monit ; 23: 1849-1855, 2017 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-28413214

RESUMEN

BACKGROUND Infliximab shows good efficacy in treating refractory rheumatoid arthritis (RA). However, many patients responded poorly and related studies were inconsistent in predictive biomarkers. This study aimed to identify circulating biomarkers for predicting infliximab response in RA. MATERIAL AND METHODS Public databases of Gene Expression Omnibus (GEO) and ArrayExpress were searched for related microarray datasets, focused on the response to infliximab in RA. All peripheral blood samples were collected before infliximab treatment and gene expression profiles were measured using microarray. Differential genes associated with infliximab efficacy were analyzed. The genes recognized by half of the datasets were regarded as candidate biomarkers and validated by prospective datasets. RESULTS Eight microarray datasets were identified with 374 blood samples of RA patients, among which 191 (51.1%) were diagnosed as non-responders in the subsequent infliximab treatment. Five genes (FKBP1A, FGF12, ANO1, LRRC31, and AKR1D1) were associated with the efficacy and recognized by half of the datasets. The 5-gene model showed a good predictive power in random- and prospective-designed studies, with AUC (area under receiver operating characteristic [ROC] curve)=0.963 and 1.000, and it was also applicable at the early phase of treatment (at week 2) for predicting the response at week 14 (AUC=1.000). In the placebo group, the model failed to predict the response (AUC=0.697), indicating the model's specificity in infliximab treatment. CONCLUSIONS The model of FKBP1A, FGF12, ANO1, LRRC31, and AKR1D1 in peripheral blood is useful for efficiently predicting the response to infliximab treatment in rheumatoid arthritis.


Asunto(s)
Antirreumáticos/uso terapéutico , Artritis Reumatoide/sangre , Artritis Reumatoide/tratamiento farmacológico , Infliximab/uso terapéutico , Adulto , Anciano , Biomarcadores/sangre , Biología Computacional , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Valor Predictivo de las Pruebas , Estudios Prospectivos , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/genética
12.
Endocr Connect ; 13(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38251963

RESUMEN

The aim of the study was to investigate the changes in serum glypican 4 (GPC4) and clusterin (CLU) levels in patients with polycystic ovary syndrome (PCOS) as well as their correlation with sex hormones and metabolic parameters. A total of 40 PCOS patients and 40 age-matched healthy women were selected. Serum GPC4 and CLU levels were compared between the PCOS and control groups, and binary logistic regression was used to analyze the relative risk of PCOS at different tertiles of serum GPC4 and CLU concentrations. Stepwise linear regression was used to identify the factors influencing serum GPC4 and CLU levels in PCOS patients. Serum GPC4 (1.82 ± 0.49 vs 1.30 ± 0.61 ng/mL, P < 0.001) and CLU (468.79 ± 92.85 vs 228.59 ± 82.42 µg/mL, P < 0.001) were significantly higher in PCOS patients than in healthy women after adjustment for body mass index (BMI). In the PCOS group, serum GPC4 was positively correlated with follicle-stimulating hormone, fasting plasma glucose (FPG), fasting insulin (FINS), homeostatic model assessment of insulin resistance (HOMA-IR), triglyceride, and CLU (P < 0.05), whereas serum CLU was positively correlated with BMI, FPG, FINS, and HOMA-IR (P < 0.05). Multiple stepwise linear regression analysis showed that HOMA-IR was independently associated with serum GPC4, and BMI and HOMA-IR were independently associated with CLU (P < 0.05). Serum GPC4 and CLU levels were significantly higher in PCOS patients than in healthy women, suggesting that GPC4 and CLU may be markers associated with insulin resistance in women with PCOS.

13.
Heliyon ; 10(11): e32460, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38933931

RESUMEN

Objective: Recent studies have shown that gene alternative splicing (AS) and long noncoding RNAs (lncRNAs) are involved in diabetes mellitus (DM) and its complications. Currently, myo-inositol (MI) is considered as effective for the treatment of insulin resistance and lipid metabolism disorders in diabetes patients. We hope to better explore the potential roles of gene AS and lncRNAs in liver glucose and lipid metabolism in diabetes, as well as the effects of myo-inositol treatment, through transcriptome analysis. Methods: This study analysed glucose and lipid metabolism-related biochemical indicators and liver HE staining in four groups of mice: the control group (Ctrl group), the diabetes group (DM group), the myo-inositol treatment group (MI group), and the metformin treatment group (Met group). The changes in relevant gene-regulated alternative splicing events (RASEs) and lncRNAs were analysed by RNA sequencing of liver tissue, and coexpression analysis and functional enrichment analysis were used to predict the possible lncRNAs and RASEs involved in liver glucose and lipid metabolism. Result: Metformin and myo-inositol alleviated insulin resistance, lipid metabolism disorders, and hepatic steatosis in diabetic mice. Transcriptome sequencing analysis revealed differential splicing events of genes related to lipid metabolism and differentially expressed lncRNAs (DElncRNAs). Six different lncRNAs and their potentially interacting splicing events were predicted. Conclusion: The present study revealed novel changes in RASEs and lncRNAs in the livers of diabetic mice following treatment with myo-inositol, which may shed light on the potential mechanisms by which myo-inositol delays and treats the progression of hepatic glucose and lipid metabolism in diabetes.

14.
Stem Cell Res Ther ; 15(1): 22, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273351

RESUMEN

OBJECTIVE: In recent years, cell therapy has emerged as a new research direction in the treatment of diabetes. However, the underlying molecular mechanisms of mesenchymal stem cell (MSC) differentiation necessary to form such treatment have not been clarified. METHODS: In this study, human umbilical cord mesenchymal stem cells (HUC-MSCs) isolated from newborns were progressively induced into insulin-producing cells (IPCs) using small molecules. HUC-MSC (S0) and four induced stage (S1-S4) samples were prepared. We then performed transcriptome sequencing experiments to obtain the dynamic expression profiles of both mRNAs and long noncoding RNAs (lncRNAs). RESULTS: We found that the number of differentially expressed lncRNAs and mRNAs trended downwards during differentiation. Gene Ontology (GO) analysis showed that the target genes of differentially expressed lncRNAs were associated with translation, cell adhesion, and cell connection. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the NF-KB signalling pathway, MAPK signalling pathway, HIPPO signalling pathway, PI3K-Akt signalling pathway, and p53 signalling pathway were enriched in these differentially expressed lncRNA-targeting genes. We also found that the coexpression of the lncRNA CTBP1-AS2 with PROX1 and the lncRNAs AC009014.3 and GS1-72M22.1 with JARID2 mRNA was related to the development of pancreatic beta cells. Moreover, the coexpression of the lncRNAs: XLOC_ 050969, LINC00883, XLOC_050981, XLOC_050925, MAP3K14- AS1, RP11-148K1.12, and CTD2020K17.3 with p53, regulated insulin secretion by pancreatic beta cells. CONCLUSION: In this study, HUC-MSCs combined with small molecule compounds were successfully induced into IPCs. Differentially expressed lncRNAs may regulate the insulin secretion of pancreatic beta cells by regulating multiple signalling pathways. The lncRNAs AC009014.3, Gs1-72m21.1, and CTBP1-AS2 may be involved in the development of pancreatic beta cells, and the lncRNAs: XLOC_050969, LINC00883, XLOC_050981, XLOC_050925, MAP3K14-AS1, RP11-148K1.12, and CTD2020K17.3 may be involved in regulating the insulin secretion of pancreatic beta cells, thus providing a lncRNA catalogue for future research regarding the mechanism of the transdifferentiation of HUC-MSCs into IPCs. It also provides a new theoretical basis for the transplantation of insulin-producing cells into diabetic patients in the future.


Asunto(s)
Insulinas , Células Madre Mesenquimatosas , ARN Largo no Codificante , Humanos , Recién Nacido , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína p53 Supresora de Tumor/genética , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical/metabolismo , Insulinas/genética , Insulinas/metabolismo , Redes Reguladoras de Genes , Perfilación de la Expresión Génica
15.
Food Chem ; 444: 138454, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38330616

RESUMEN

Coloured rice is known as a healthcare food owing its rich flavonoid content. To better understand the effects of iron on the flavonoid metabolism of coloured rice grains, different concentrations of FeSO4 were foliar sprayed on to red rice Yuhongdao 5815 (RR) and black rice Nanheinuo (BR). The results revealed the association of iron with the increased accumulation of anthocyanins in BR and proanthocyanins in RR along with enhancements in their antioxidant capacities and total flavonoid contents. Metabolomic analysis revealed that the differential metabolites between the iron treated coloured rice and the control primarily occurred because of the O-linked glycosylation of aglycones, which are involved in the flavonoid pathway. RR exhibited a significantly higher number of differential metabolites compared with BR. Thus, foliar FeSO4 application affects the O-linked glycosylation and positively regulates flavonoid metabolism.


Asunto(s)
Flavonoides , Oryza , Flavonoides/metabolismo , Antocianinas/metabolismo , Oryza/metabolismo , Glicosilación , Hierro/análisis
16.
J Colloid Interface Sci ; 636: 450-458, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36641820

RESUMEN

Bifunctional oxygen electrocatalysts that hold outstanding activity and stability are highly crucial for the development of efficient rechargeable Zn-air batteries. Herein, cobalt-molybdenum-based bimetallic carbide and cobalt nanoparticles embedded N-doped carbon nanocages are synthesized via the pyrolysis of functionalized zeolitic imidazolate framework precursor originated from zeolitic imidazolate framework sequentially coated with polydopamine and phosphomolybdic acid. Furthermore, we revealed the composition-performance relationship based on the exploration of bifunctional performance on the pyrolysis products. More importantly, the synergy of multiple active sites with hollow structure gives the prepared catalyst a low overpotential (284 mV) for oxygen evolution reaction and high half-wave potential (0.865 V) for oxygen reduction reaction, besides an excellent bifunctional durability. Furthermore, the prepared catalyst as a cathode electrocatalyst grants the assembled rechargeable Zn-air batteries a high open-circuit voltage, power density, specific capacity, and remarkable charge-discharge cycle stability. This work provides a strategy for the integration and active-adjustment of bifunctional catalyst and its potential applications in water splitting and other catalytic reactions.

17.
Toxics ; 11(6)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37368642

RESUMEN

Insect glutathione S-transferases (GSTs) serve critical roles in insecticides and other forms of xenobiotic chemical detoxification. The fall armyworm, Spodoptera frugiperda (J. E. Smith), is a major agricultural pest in several countries, especially Egypt. This is the first study to identify and characterize GST genes in S. frugiperda under insecticidal stress. The present work evaluated the toxicity of emamectin benzoate (EBZ) and chlorantraniliprole (CHP) against the third-instar larvae of S. frugiperda using the leaf disk method. The LC50 values of EBZ and CHP were 0.029 and 1.250 mg/L after 24 h of exposure. Moreover, we identified 31 GST genes, including 28 cytosolic and 3 microsomal SfGSTs from a transcriptome analysis and the genome data of S. frugiperda. Depending on the phylogenetic analysis, sfGSTs were divided into six classes (delta, epsilon, omega, sigma, theta, and microsomal). Furthermore, we investigated the mRNA levels of 28 GST genes using qRT-PCR under EBZ and CHP stress in the third-instar larvae of S. frugiperda. Interestingly, SfGSTe10 and SfGSTe13 stood out with the highest expression after the EBZ and CHP treatments. Finally, a molecular docking model was constructed between EBZ and CHP using the most upregulated genes (SfGSTe10 and SfGSTe13) and the least upregulated genes (SfGSTs1 and SfGSTe2) of S. frugiperda larvae. The molecular docking study showed EBZ and CHP have a high binding affinity with SfGSTe10, with docking energy values of -24.41 and -26.72 kcal/mol, respectively, and sfGSTe13, with docking energy values of -26.85 and -26.78 kcal/mol, respectively. Our findings are important for understanding the role of GSTs in S. frugiperda regarding detoxification processes for EBZ and CHP.

18.
Front Plant Sci ; 14: 1295186, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38283979

RESUMEN

Centella asiatica (L.) Urban is a well-known medicinal plant which has multiple pharmacological properties. Notably, the leaves of C. asiatica contain large amounts of triterpenoid saponins. However, there have only been a few studies systematically elucidating the metabolic dynamics and transcriptional differences regarding triterpenoid saponin biosynthesis during the leaf development stages of C. asiatica. Here, we performed a comprehensive analysis of the metabolome and transcriptome to reveal the dynamic patterns of triterpenoid saponin accumulation and identified the key candidate genes associated with their biosynthesis in C. asiatica leaves. In this study, we found that the key precursors in the synthesis of terpenoids, including DMAPP, IPP and ß-amyrin, as well as 22 triterpenes and eight triterpenoid saponins were considered as differentially accumulated metabolites. The concentrations of DMAPP, IPP and ß-amyrin showed significant increases during the entire stage of leaf development. The levels of 12 triterpenes decreased only during the later stages of leaf development, but five triterpenoid saponins rapidly accumulated at the early stages, and later decreased to a constant level. Furthermore, 48 genes involved in the MVA, MEP and 2, 3-oxidosqualene biosynthetic pathways were selected following gene annotation. Then, 17 CYP450s and 26 UGTs, which are respectively responsible for backbone modifications, were used for phylogenetic-tree construction and time-specific expression analysis. From these data, by integrating metabolomics and transcriptomics analyses, we identified CaHDR1 and CaIDI2 as the candidate genes associated with DMAPP and IPP synthesis, respectively, and CaßAS1 as the one regulating ß-amyrin synthesis. Two genes from the CYP716 family were confirmed as CaCYP716A83 and CaCYP716C11. We also selected two UGT73 families as candidate genes, associated with glycosylation of the terpenoid backbone at C-3 in C. asiatica. These findings will pave the way for further research on the molecular mechanisms associated with triterpenoid saponin biosynthesis in C. asiatica.

19.
Sci Rep ; 13(1): 18315, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880216

RESUMEN

Silicon (Si) and/or proline (Pro) are natural supplements that are considered to induce plants' stress tolerance against various abiotic stresses. Sweet corn (Zea mays L. saccharata) production is severely afflicted by salinity stress. Therefore, two field tests were conducted to evaluate the potential effects of Si and/or Pro (6mM) used as seed soaking (SS) and/or foliar spray (FS) on Sweet corn plant growth and yield, physio-biochemical attributes, and antioxidant defense systems grown in a saline (EC = 7.14dS m-1) soil. The Si and/or Pro significantly increased growth and yield, photosynthetic pigments, free proline, total soluble sugars (TSS), K+/Na+ratios, relative water content (RWC), membrane stability index (MSI), α-Tocopherol (α-TOC), Ascorbate (AsA), glutathione (GSH), enzymatic antioxidants activities and other anatomical features as compared to controls. In contrast, electrolytes, such as SS and/or FS under salt stress compared to controls (SS and FS using tap water) were significantly decreased. The best results were obtained when SS was combined with FS via Si or Pro. These alterations are brought about by the exogenous application of Si and/or Pro rendering these elements potentially useful in aiding sweet corn plants to acclimate successfully to saline soil.


Asunto(s)
Antioxidantes , Zea mays , Antioxidantes/farmacología , Silicio/farmacología , Prolina/farmacología , Estrés Salino , Glutatión , Agua , Suelo/química
20.
Zhonghua Yu Fang Yi Xue Za Zhi ; 46(6): 538-42, 2012 Jun.
Artículo en Zh | MEDLINE | ID: mdl-22943902

RESUMEN

OBJECTIVE: This study aims to investigate the correlation between polymorphism of sex hormone-binding globulin (SHBG) Asp327Asn (rs6259) locus and occurrence of hepatocellular carcinoma (HCC). METHODS: 621 cases with HCC and 621 cancer-free controls from two hospitals of Guangxi were recruited from January, 2007 to June, 2010. Single nucleotide polymorphisms (SNP) of SHBG Asp327Asn were detected by ABI7500 Fast Real-Time fluorescence quantitative PCR. Multivariate unconditional logistic regression was applied to analyze risk of HCC among different genotypes carriers and their interaction with the exposure factors. The Kaplan-Meier survival analysis was used to detect the relationship between onset age of HCC and genotypes. RESULTS: The frequencies of Asp/Asp, Asp/Asn and Asn/Asn genotype in case group were 86.31% (536/621), 12.40% (77/621) and 1.29% (8/621), respectively; while those in control group were 81.00% (503/621), 17.39% (108/621) and 1.61% (10/621), respectively. Significant difference in the genotype frequencies distribution was found between case and control groups (χ2=6.465, P<0.05). Compared with those harboring Asp/Asp genotype, multivariate logistic regression analysis revealed that the HCC risk of Asn/Asn+Asp/Asn genotype carriers was significantly decreased (adjusted OR=0.63, 95%CI: 0.40-0.98). Interaction analysis showed that there was interaction between the polymorphisms and two exposure factors, drinking (adjusted OR=3.45, 95%CI: 1.74-6.83) and HBV infection (adjusted OR=40.77, 95%CI: 21.60-76.97). Among those male patients with history of drinking, survival analysis indicated that the mean age of onset of individuals harboring Asp/Asp genotypes ((47.99±0.75) years-old) was 6 years earlier than those with Asn/Asn or Asp/Asn genotypes ((53.68±2.07) years-old) (χ2=6.91, P<0.01). CONCLUSION: Polymorphism of SHBG (Asp327Asn) may be associated with both the risk of HCC occurrence and onset age of HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Polimorfismo de Nucleótido Simple , Globulina de Unión a Hormona Sexual/genética , Carcinoma Hepatocelular/epidemiología , Estudios de Casos y Controles , Femenino , Genotipo , Humanos , Neoplasias Hepáticas/epidemiología , Masculino , Persona de Mediana Edad , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA