Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Neurosci ; 44(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38050089

RESUMEN

The hippocampus plays a central role as a coordinate system or index of information stored in neocortical loci. Nonetheless, it remains unclear how hippocampal processes integrate with cortical information to facilitate successful memory encoding. Thus, the goal of the current study was to identify specific hippocampal-cortical interactions that support object encoding. We collected fMRI data while 19 human participants (7 female and 12 male) encoded images of real-world objects and tested their memory for object concepts and image exemplars (i.e., conceptual and perceptual memory). Representational similarity analysis revealed robust representations of visual and semantic information in canonical visual (e.g., occipital cortex) and semantic (e.g., angular gyrus) regions in the cortex, but not in the hippocampus. Critically, hippocampal functions modulated the mnemonic impact of cortical representations that are most pertinent to future memory demands, or transfer-appropriate representations Subsequent perceptual memory was best predicted by the strength of visual representations in ventromedial occipital cortex in coordination with hippocampal activity and pattern information during encoding. In parallel, subsequent conceptual memory was best predicted by the strength of semantic representations in left inferior frontal gyrus and angular gyrus in coordination with either hippocampal activity or semantic representational strength during encoding. We found no evidence for transfer-incongruent hippocampal-cortical interactions supporting subsequent memory (i.e., no hippocampal interactions with cortical visual/semantic representations supported conceptual/perceptual memory). Collectively, these results suggest that diverse hippocampal functions flexibly modulate cortical representations of object properties to satisfy distinct future memory demands.Significance Statement The hippocampus is theorized to index pieces of information stored throughout the cortex to support episodic memory. Yet how hippocampal processes integrate with cortical representation of stimulus information remains unclear. Using fMRI, we examined various forms of hippocampal-cortical interactions during object encoding in relation to subsequent performance on conceptual and perceptual memory tests. Our results revealed novel hippocampal-cortical interactions that utilize semantic and visual representations in transfer-appropriate manners: conceptual memory supported by hippocampal modulation of frontoparietal semantic representations, and perceptual memory supported by hippocampal modulation of occipital visual representations. These findings provide important insights into the neural mechanisms underlying the formation of information-rich episodic memory and underscore the value of studying the flexible interplay between brain regions for complex cognition.


Asunto(s)
Mapeo Encefálico , Memoria Episódica , Humanos , Masculino , Femenino , Hipocampo , Lóbulo Parietal , Corteza Prefrontal , Imagen por Resonancia Magnética
2.
Nat Mater ; 23(4): 470-478, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38418924

RESUMEN

Two-dimensional materials have emerged as an important research frontier for overcoming the challenges in nanoelectronics and for exploring new physics. Among them, black phosphorus, with a combination of a tunable bandgap and high mobility, is one of the most promising systems. In particular, black phosphorus nanoribbons show excellent electrostatic gate control, which can mitigate short-channel effects in nanoscale transistors. Controlled synthesis of black phosphorus nanoribbons, however, has remained an outstanding problem. Here we report large-area growth of black phosphorus nanoribbons directly on insulating substrates. We seed the chemical vapour transport growth with black phosphorus nanoparticles and obtain uniform, single-crystal nanoribbons oriented exclusively along the [100] crystal direction. With comprehensive structural calculations, we discover that self-passivation at the zigzag edges holds the key to the preferential one-dimensional growth. Field-effect transistors based on individual nanoribbons exhibit on/off ratios up to ~104, confirming the good semiconducting behaviour of the nanoribbons. These results demonstrate the potential of black phosphorus nanoribbons for nanoelectronic devices and also provide a platform for investigating the exotic physics in black phosphorus.

3.
Nano Lett ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259167

RESUMEN

The interlayer electronic coupling is responsible for the electronic structure evolution from monolayer graphene to graphite and for the moiré potential in twisted bilayer graphene. Here we demonstrate that the interlayer transfer integral (hopping parameter) increases nearly 40% with a quite moderate pressure of ∼3.5 GPa, manifested by the resonance peak shift in the infrared spectra of all 2-10 L graphene. A simple model based on the Morse potential enabled us to establish the relationship between the transfer integral and pressure. Our work provides fundamental insights into the dependence of the electronic coupling on the interlayer distance.

4.
J Cogn Neurosci ; 36(10): 2137-2165, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39023370

RESUMEN

Several recent fMRI studies of episodic and working memory representations converge on the finding that visual information is most strongly represented in occipito-temporal cortex during the encoding phase but in parietal regions during the retrieval phase. It has been suggested that this location shift reflects a change in the content of representations, from predominantly visual during encoding to primarily semantic during retrieval. Yet, direct evidence on the nature of encoding and retrieval representations is lacking. It is also unclear how the representations mediating the encoding-retrieval shift contribute to memory performance. To investigate these two issues, in the current fMRI study, participants encoded pictures (e.g., picture of a cardinal) and later performed a word recognition test (e.g., word "cardinal"). Representational similarity analyses examined how visual (e.g., red color) and semantic representations (e.g., what cardinals eat) support successful encoding and retrieval. These analyses revealed two novel findings. First, successful memory was associated with representational changes in cortical location (from occipito-temporal at encoding to parietal at retrieval) but not with changes in representational content (visual vs. semantic). Thus, the representational encoding-retrieval shift cannot be easily attributed to a change in the nature of representations. Second, in parietal regions, stronger representations predicted encoding failure but retrieval success. This encoding-retrieval "flip" in representations mimics the one previously reported in univariate activation studies. In summary, by answering important questions regarding the content and contributions to the performance of the representations mediating the encoding-retrieval shift, our findings clarify the neural mechanisms of this intriguing phenomenon.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral , Imagen por Resonancia Magnética , Recuerdo Mental , Humanos , Masculino , Femenino , Adulto Joven , Corteza Cerebral/fisiología , Corteza Cerebral/diagnóstico por imagen , Recuerdo Mental/fisiología , Adulto , Estimulación Luminosa , Reconocimiento en Psicología/fisiología , Semántica , Reconocimiento Visual de Modelos/fisiología , Adolescente
5.
J Cogn Neurosci ; : 1-12, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39136557

RESUMEN

Although living and nonliving stimuli are known to rely on distinct brain regions during perception, it is largely unknown if their episodic memory encoding mechanisms differ as well. To investigate this issue, we asked participants to encode object pictures (e.g., a picture of a tiger) and to retrieve them later in response to their names (e.g., word "tiger"). For each of four semantic classes (living-animate, living-inanimate, nonliving-large, and nonliving-small), we examined differences in the similarity in activation patterns (neural pattern similarity [NPS]) for subsequently remembered versus forgotten items. Higher NPS for remembered items suggests an advantage of within-class item similarity, whereas lower NPS for remembered items indicates an advantage for item distinctiveness. We expect NPS within class-specific regions to be higher for remembered than for forgotten items. For example, the parahippocampal cortex has a well-known role in scene processing [Aminoff, E. M., Kveraga, K., & Bar, M. The role of the parahippocampal cortex in cognition. Trends in Cognitive Sciences, 17, 379-390, 2013], and the anterior temporal and inferior frontal gyrus have well-known roles in object processing [Clarke, A., & Tyler, L. K. Object-specific semantic coding in human perirhinal cortex. Journal of Neuroscience, 34, 4766-4775, 2014]. As such, we expect to see higher NPS for remembered items in these regions pertaining to scenes and objects, respectively. Consistent with this hypothesis, in fusiform, parahippocampal, and retrosplenial regions, higher NPS predicted memory for subclasses of nonliving objects, whereas in the left inferior frontal and left retrosplenial regions, lower NPS predicted memory for subclasses of living objects. Taken together, the results support the idea that subsequent memory depends on a balance of similarity and distinctiveness and demonstrate that the neural mechanisms of episodic encoding differ across semantic categories.

6.
Phys Rev Lett ; 133(2): 026901, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39073979

RESUMEN

Understanding dephasing mechanisms of strong-field-driven excitons in condensed matter is essential for their applications in quantum-state manipulation and ultrafast optical modulations. However, experimental access to exciton dephasing under strong-field conditions is challenging. In this study, using time- and spectrum-resolved quantum-path interferometry, we investigate the dephasing mechanisms of terahertz-driven excitonic Autler-Townes doublets in MoS_{2}. Our results reveal a dramatic increase in the dephasing rate beyond a threshold field strength, indicating exciton dissociation as the primary dephasing mechanism. Furthermore, we demonstrate nonperturbative high-order sideband generation in a regime where the driving fields are insufficient to dissociate excitons.

7.
Nano Lett ; 23(15): 6907-6913, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37494570

RESUMEN

Stacking bilayer structures is an efficient way to tune the topology of polaritons in in-plane anisotropic films, e.g., by leveraging the twist angle (TA). However, the effect of another geometric parameter, the film thickness ratio (TR), on manipulating the plasmon topology in bilayers is elusive. Here, we fabricate bilayer structures of WTe2 films, which naturally host in-plane hyperbolic plasmons in the terahertz range. Plasmon topology is successfully modified by changing the TR and TA synergistically, manifested by the extinction spectra of unpatterned films and the polarization dependence of the plasmon intensity measured in skew ribbon arrays. Such TR- and TA-tunable topological transitions can be well explained based on the effective sheet optical conductivity by adding up those of the two films. Our study demonstrates TR as another degree of freedom for the manipulation of plasmonic topology in nanophotonics, exhibiting promising applications in biosensing, heat transfer, and the enhancement of spontaneous emission.

8.
Opt Express ; 29(2): 1244-1250, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33726343

RESUMEN

With the downscaled device size, electrons in semiconductor electronics are often electrically driven out-of-thermal-equilibrium with hosting lattices for their functionalities. The thereby electrothermal Joule heating to the lattices can be visualized directly by the noncontact infrared radiation thermometry with the hypothetic Planck distribution at a single characteristic temperature. We report here that the infrared emission spectrum from electrically biased GaAs devices deviates obviously from Planck distribution, due to the additional contribution from non-equilibrium hot electrons whose effective temperature reaches much higher than that of the lattice (Te>Tl). The evanescent infrared emission from these hot electrons is out-coupled by a near-field metamaterial grating and is hence made significant to the total far-field emission spectrum. Resonant emission peak has also been observed when the electron hotspots are managed to overlap spatially with the optical hotspots at the grating resonance. Our work opens a new direction to study nonequilibrium dynamics with (non-Planckian) infrared emission spectroscopy and provides important implications into the microscopic energy dissipation and heat management in nanoelectronics.

9.
Phys Rev Lett ; 127(18): 186401, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34767429

RESUMEN

Through infrared spectroscopy, we systematically study the pressure effect on electronic structures of few-layer black phosphorus (BP) with layer number ranging from 2 to 13. We reveal that the pressure-induced shift of optical transitions exhibits strong layer dependence. In sharp contrast to the bulk counterpart which undergoes a semiconductor to semimetal transition under ∼1.8 GPa, the band gap of 2 L increases with increasing pressure until beyond 2 GPa. Meanwhile, for a sample with a given layer number, the pressure-induced shift also differs for transitions with different indices. Through the tight-binding model in conjunction with a Morse potential for the interlayer coupling, this layer- and transition-index-dependent pressure effect can be fully accounted. Our study paves a way for versatile van der Waals engineering of two-dimensional BP.

10.
Phys Rev Lett ; 126(14): 147401, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33891459

RESUMEN

Tunable terahertz plasmons are essential for reconfigurable photonics, which have been demonstrated in graphene through gating, though with relatively weak responses. Here we demonstrate strong terahertz plasmons in graphite thin films via infrared spectroscopy, with dramatic tunability by even a moderate temperature change or an in situ bias voltage. Meanwhile, through magnetoplasmon studies, we reveal that massive electrons and massless Dirac holes make comparable contributions to the plasmon response. Our study not only sets up a platform for further exploration of two-component plasmas, but also opens an avenue for terahertz modulation through electrical bias or all-optical means.

11.
Phys Rev Lett ; 125(15): 156802, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33095618

RESUMEN

The temperature dependence of the band gap is crucial to a semiconductor. Bulk black phosphorus is known to exhibit an anomalous behavior. Through optical spectroscopy, here we show that the temperature effect on black phosphorus band gap gradually evolves with decreasing layer number, eventually turns into a normal one in the monolayer limit, rendering a crossover from the anomalous to the normal. Meanwhile, the temperature-induced shift in optical resonance also differs with different transition indices for the same thickness sample. A comprehensive analysis reveals that the temperature-tunable interlayer coupling is responsible for the observed diverse scenario. Our study provides a key to the apprehension of the anomalous temperature behavior in certain layered semiconductors.

12.
Mem Cognit ; 48(2): 277-286, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31989484

RESUMEN

People tend to believe that they truly are morally good, and yet they commit moral transgressions with surprising frequency in their everyday lives. To explain this phenomenon, some theorists have suggested that people remember their moral transgressions with fewer details, lower vivacity, and less clarity, relative to their morally good deeds and other kinds of past events. These phenomenological differences are thought to help alleviate psychological discomfort and to help people maintain a morally good self-concept. Given these motivations to alleviate discomfort and to maintain a morally good self-concept, we might expect our more egregious moral transgressions, relative to our more minor transgressions, to be remembered less frequently, with fewer details, with lower vivacity, and with a reduced sense of reliving. More severe moral transgressions might also be less central to constructions of personal identity. In contrast to these expectations, our results suggest that participants' more severe moral transgressions are actually remembered more frequently, more vividly, and with more detail. More severe moral transgressions also tend to be more central to personal identity. We discuss the implications of these results for the motivation to maintain a morally good self-concept and for the functions of autobiographical memory.


Asunto(s)
Memoria Episódica , Recuerdo Mental , Principios Morales , Autoimagen , Conducta Social , Adulto , Femenino , Humanos , Masculino , Adulto Joven
13.
Sci Rep ; 14(1): 11696, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777814

RESUMEN

Epidemic modeling is essential in understanding the spread of infectious diseases like COVID-19 and devising effective intervention strategies to control them. Recently, network-based disease models have integrated traditional compartment-based modeling with real-world contact graphs and shown promising results. However, in an ongoing epidemic, future contact network patterns are not observed yet. To address this, we use aggregated static networks to approximate future contacts for disease modeling. The standard method in the literature concatenates all edges from a dynamic graph into one collapsed graph, called the full static graph. However, the full static graph often leads to severe overestimation of key epidemic characteristics. Therefore, we propose two novel static network approximation methods, DegMST and EdgeMST, designed to preserve the sparsity of real world contact network while remaining connected. DegMST and EdgeMST use the frequency of temporal edges and the node degrees respectively to preserve sparsity. Our analysis show that our models more closely resemble the network characteristics of the dynamic graph compared to the full static ones. Moreover, our analysis on seven real-world contact networks suggests EdgeMST yield more accurate estimations of disease dynamics for epidemic forecasting when compared to the standard full static method.


Asunto(s)
COVID-19 , Epidemias , Predicción , Humanos , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/prevención & control , Predicción/métodos , SARS-CoV-2/aislamiento & purificación , Trazado de Contacto/métodos , Algoritmos , Modelos Epidemiológicos
14.
Asian J Surg ; 47(9): 3827-3840, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38448293

RESUMEN

Surgery after neoadjuvant chemoradiotherapy remains the gold standard for the treatment of resectable esophageal cancer (EC); however, chemoradiotherapy without surgery has been recommended in specific cases. The aim of this meta-analysis is to analyse the survival between surgeries after neoadjuvant chemoradiotherapy compared with definitive chemoradiotherapy in order to provide a theoretical basis for clinically individualised differential treatment. We conducted an initial search of MEDLINE (PubMed), the Cochrane Library, and Embase for English-only articles that compared treatment regimens and provided survival data. According to the final I2 value of the two survival indicators, the random effect model or fixed effect model was used to calculate the overall hazard ratio (HR) and 95% confidence intervals (CI). Cochrane's Q test was used to judge the heterogeneity of the studies, and a funnel plot was used to evaluate for publication bias. A sensitivity analysis was performed to verify the stability of the included studies. A total of 38 studies involving 29161 patients (neoadjuvant therapy: 15401, definitive chemoradiotherapy: 13760) were included in the analysis. The final pooled results (HR = 0.74, 95% CI: 0.67-0.82) showed a statistically significant increase in overall survival with neoadjuvant chemoradiotherapy plus surgery compared with definitive chemoradiotherapy. Subgroup analyses were performed to determine the effects of heterogeneity, additional treatment regimens, study types, and geographic regions, as well as histologic differences, complications, and recurrence, on the overall results. For people with esophageal cancer that can be removed, neoadjuvant chemoradiotherapy combined with surgery improves survival compared to definitive chemoradiotherapy. However, more research is needed to confirm these results and help doctors make decisions about treatment.


Asunto(s)
Quimioradioterapia , Neoplasias Esofágicas , Esofagectomía , Terapia Neoadyuvante , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/mortalidad , Neoplasias Esofágicas/patología , Humanos , Tasa de Supervivencia , Resultado del Tratamiento , Terapia Combinada , Quimioradioterapia Adyuvante
15.
Sci Rep ; 14(1): 10630, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724623

RESUMEN

Episodic counterfactual thinking (eCFT) is the process of mentally simulating alternate versions of experiences, which confers new phenomenological properties to the original memory and may be a useful therapeutic target for trait anxiety. However, it remains unclear how the neural representations of a memory change during eCFT. We hypothesized that eCFT-induced memory modification is associated with changes to the neural pattern of a memory primarily within the default mode network, moderated by dispositional anxiety levels. We tested this proposal by examining the representational dynamics of eCFT for 39 participants varying in trait anxiety. During eCFT, lateral parietal regions showed progressively more distinct activity patterns, whereas medial frontal neural activity patterns became more similar to those of the original memory. Neural pattern similarity in many default mode network regions was moderated by trait anxiety, where highly anxious individuals exhibited more generalized representations for upward eCFT (better counterfactual outcomes), but more distinct representations for downward eCFT (worse counterfactual outcomes). Our findings illustrate the efficacy of examining eCFT-based memory modification via neural pattern similarity, as well as the intricate interplay between trait anxiety and eCFT generation.


Asunto(s)
Ansiedad , Pensamiento , Humanos , Masculino , Ansiedad/fisiopatología , Femenino , Pensamiento/fisiología , Adulto Joven , Adulto , Imagen por Resonancia Magnética , Memoria/fisiología , Mapeo Encefálico , Encéfalo/fisiopatología , Encéfalo/fisiología
16.
Phys Life Rev ; 49: 139-156, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38728902

RESUMEN

Functional connectivity is conventionally defined by measuring the similarity between brain signals from two regions. The technique has become widely adopted in the analysis of functional magnetic resonance imaging (fMRI) data, where it has provided cognitive neuroscientists with abundant information on how brain regions interact to support complex cognition. However, in the past decade the notion of "connectivity" has expanded in both the complexity and heterogeneity of its application to cognitive neuroscience, resulting in greater difficulty of interpretation, replication, and cross-study comparisons. In this paper, we begin with the canonical notions of functional connectivity and then introduce recent methodological developments that either estimate some alternative form of connectivity or extend the analytical framework, with the hope of bringing better clarity for cognitive neuroscience researchers.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Cognición , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen
17.
J Law Biosci ; 11(1): lsad032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38259629

RESUMEN

As we approach an era of potentially widespread consumer neurotechnology, scholars and organizations worldwide have started to raise concerns about the data privacy issues these devices will present. Notably absent in these discussions is empirical evidence about how the public perceives that same information. This article presents the results of a nationwide survey on public perceptions of brain data, to inform discussions of law and policy regarding brain data governance. The survey reveals that the public may perceive certain brain data as less sensitive than other 'private' information, like social security numbers, but more sensitive than some 'public' information, like media preferences. The findings also reveal that not all inferences about mental experiences may be perceived as equally sensitive, and perhaps not all data should be treated alike in ethical and policy discussions. An enhanced understanding of public perceptions of brain data could advance the development of ethical and legal norms concerning consumer neurotechnology.

18.
Nat Commun ; 15(1): 2623, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521817

RESUMEN

In-plane anisotropic van der Waals materials have emerged as a natural platform for anisotropic polaritons. Extreme anisotropic polaritons with in-situ broadband tunability are of great significance for on-chip photonics, yet their application remains challenging. In this work, we experimentally characterize through Fourier transform infrared spectroscopy measurements a van der Waals plasmonic material, 2M-WS2, capable of supporting intrinsic room-temperature in-plane anisotropic plasmons in the far and mid-infrared regimes. In contrast to the recently revealed natural hyperbolic plasmons in other anisotropic materials, 2M-WS2 supports canalized plasmons with flat isofrequency contours in the frequency range of ~ 3000-5000 cm-1. Furthermore, the anisotropic plasmons and the corresponding isofrequency contours can be reversibly tuned via in-situ ion-intercalation. The tunable anisotropic and canalization plasmons may open up further application perspectives in the field of uniaxial plasmonics, such as serving as active components in directional sensing, radiation manipulation, and polarization-dependent optical modulators.

19.
Nat Commun ; 15(1): 7071, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152117

RESUMEN

Acquiring multi-dimensional optical information, such as intensity, spectrum, polarization, and phase, can significantly enhance the performance of photodetectors. Incorporating these dimensions allows for improved image contrast, enhanced recognition capabilities, reduced interference, and better adaptation to complex environments. However, the challenge lies in obtaining these dimensions on a single photodetector. Here we propose a misaligned unipolar barrier photodetector based on van der Waals heterojunction to address this issue. This structure enables spectral detection by switching between two absorbing layers with different cut-off wavelengths for dual-band detection. For polarization detection, anisotropic semiconductors like black phosphorus and black arsenic phosphorus inherently possess polarization-detection capabilities without additional complex elements. By manipulating the crystal direction of these materials during heterojunction fabrication, the device becomes sensitive to incident light at different polarization angles. This research showcases the potential of the misaligned unipolar barrier photodetector in capturing multi-dimensional optical information, paving the way for next-generation photodetectors.

20.
ACS Nano ; 17(6): 6073-6080, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36912761

RESUMEN

Van der Waals quantum wells, naturally formed in two-dimensional layered materials with nanoscale thickness, possess many inherent advantages over conventional molecular beam epitaxy grown counterparts, and could bring up intriguing physics and applications. However, optical transitions originated from the series of quantized states in these emerging quantum wells are still elusive. Here, we show that multilayer black phosphorus appears to be an excellent candidate for van der Waals quantum wells with well-defined subbands and high optical quality. Using infrared absorption spectroscopy, we probe subband structures of multilayer black phosphorus with tens of atomic layers, revealing clear signatures for optical transitions with subband index as high as 10, far from what was attainable previously. Surprisingly, in addition to allowed transitions, an unexpected series of "forbidden" transitions is also evidently observed, which enables us to determine energy spacings separately for conduction and valence subbands. Furthermore, the linear tunability of subband spacings by temperature and strain is demonstrated. Our results are expected to facilitate potential applications for infrared optoelectronics based on tunable van der Waals quantum wells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA