Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(21): 14705-14714, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38749060

RESUMEN

Hydrogel microparticles (HMPs) have been investigated widely for their use in tissue engineering and drug delivery applications. However, translation of these highly tunable systems has been hindered by covalent cross-linking methods within microparticles. Stereocomplexation, a stereospecific form of physical cross-linking, provides a robust yet degradable alternative for creating translationally relevant HMPs. Herein, 4-arm polyethylene glycol (PEG) stars were used as macromolecular initiators from which oligomeric poly(l-lactic acid) (PLLA) was polymerized with a degree of polymerization (DPn) of 20 on each arm. Similarly, complementary propargyl-containing ABA cross-linkers with enantiomeric poly(d-lactic acid) (PDLA) segments (DPn = 20) on each arm. Droplets of these gel precursors were formed via a microfluidic organic-in-oil-in-water system where microparticles self-assembled via stereocomplexation and were stabilized after precipitation in deionized water. By varying the flow rate of the dispersed phase, well-defined microparticles with diameters of 33.7 ± 0.5, 62.4 ± 0.6, and 105.7 ± 0.8 µm were fabricated. Gelation due to stereocomplexation was confirmed via wide-angle X-ray scattering in which HMPs exhibited the signature diffraction pattern of stereocomplexed PLA at 2θ = 12.2, 21.2, 24.2°. Differential scanning calorimetry also confirmed stereocomplexation by the appearance of a crystallization exotherm (Tc = 37 °C) and a high-temperature endotherm (Tm = 159 °C) that does not appear in the homocrystallization of PLLA or the hydrogel precursors. Additionally, the propargyl handle present on the cross-linker allows for pre- or post-assembly thiol-yne "click" functionalization as demonstrated by the addition of thiol-containing fluorophores to the HMPs.

2.
J Phys D Appl Phys ; 57(30)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38800708

RESUMEN

Surface acoustic wave (SAW)-enabled acoustofluidic technologies have recently atttracted increasing attention for applications in biology, chemistry, biophysics, and medicine. Most SAW acoustofluidic devices generate acoustic energy which is then transmitted into custom microfabricated polymer-based channels. There are limited studies on delivering this acoustic energy into convenient commercially-available glass tubes for manipulating particles and fluids. Herein, we have constructed a capillary-based SAW acoustofluidic device for multifunctional fluidic and particle manipulation. This device integrates a converging interdigitated transducer to generate focused SAWs on a piezoelectric chip, as well as a glass capillary that transports particles and fluids. To understand the actuation mechanisms underlying this device, we performed finite element simulations by considering piezoelectric, solid mechanic, and pressure acoustic physics. This experimental study shows that the capillary-based SAW acoustofluidic device can perform multiple functions including enriching particles, patterning particles, transporting particles and fluids, as well as generating droplets with controlled sizes. Given the usefulness of these functions, we expect that this acoustofluidic device can be useful in applications such as pharmaceutical manufacturing, biofabrication, and bioanalysis.

3.
Nat Mater ; 21(5): 540-546, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35332292

RESUMEN

Precise and selective manipulation of colloids and biological cells has long been motivated by applications in materials science, physics and the life sciences. Here we introduce our harmonic acoustics for a non-contact, dynamic, selective (HANDS) particle manipulation platform, which enables the reversible assembly of colloidal crystals or cells via the modulation of acoustic trapping positions with subwavelength resolution. We compose Fourier-synthesized harmonic waves to create soft acoustic lattices and colloidal crystals without using surface treatment or modifying their material properties. We have achieved active control of the lattice constant to dynamically modulate the interparticle distance in a high-throughput (>100 pairs), precise, selective and reversible manner. Furthermore, we apply this HANDS platform to quantify the intercellular adhesion forces among various cancer cell lines. Our biocompatible HANDS platform provides a highly versatile particle manipulation method that can handle soft matter and measure the interaction forces between living cells with high sensitivity.


Asunto(s)
Acústica , Coloides , Coloides/química , Ciencia de los Materiales
4.
Proc Natl Acad Sci U S A ; 117(20): 10976-10982, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32358194

RESUMEN

Advances in gene editing are leading to new medical interventions where patients' own cells are used for stem cell therapies and immunotherapies. One of the key limitations to translating these treatments to the clinic is the need for scalable technologies for engineering cells efficiently and safely. Toward this goal, microfluidic strategies to induce membrane pores and permeability have emerged as promising techniques to deliver biomolecular cargo into cells. As these technologies continue to mature, there is a need to achieve efficient, safe, nontoxic, fast, and economical processing of clinically relevant cell types. We demonstrate an acoustofluidic sonoporation method to deliver plasmids to immortalized and primary human cell types, based on pore formation and permeabilization of cell membranes with acoustic waves. This acoustofluidic-mediated approach achieves fast and efficient intracellular delivery of an enhanced green fluorescent protein-expressing plasmid to cells at a scalable throughput of 200,000 cells/min in a single channel. Analyses of intracellular delivery and nuclear membrane rupture revealed mechanisms underlying acoustofluidic delivery and successful gene expression. Our studies show that acoustofluidic technologies are promising platforms for gene delivery and a useful tool for investigating membrane repair.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Sistema Hematopoyético , Células Madre , Supervivencia Celular , Citoplasma , Expresión Génica , Técnicas de Transferencia de Gen/instrumentación , Terapia Genética/instrumentación , Proteínas Fluorescentes Verdes/genética , Humanos , Células Jurkat , Plásmidos , Sonido
5.
Opt Lett ; 47(4): 826-829, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35167535

RESUMEN

This Letter reports ring-shaped photoacoustic (PA) tweezers that are capable of manipulating single or multiple micron-sized particles. By illuminating a thin layer of an optically absorptive liquid medium with a focused annular pulsed laser beam and a higher pulse repetition rate (e.g., 800 Hz), both acoustic radiation force and instantaneous vaporization repulsion are generated within a certain distance of the illumination region. This makes it possible to conduct continuous and versatile locomotion of single or multiple microparticles. In this Letter, interactions between two or more particles are demonstrated, such as separation, attachment, and grouping of microparticles. The PA tweezers combine some of the advantages of conventional optical and acoustic tweezers and are expected to be a useful alternative approach for the manipulation of microscale objects.


Asunto(s)
Acústica , Pinzas Ópticas , Luz , Análisis Espectral
6.
Small ; 17(46): e2103848, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34658129

RESUMEN

Droplet microfluidics has revolutionized the biomedical and drug development fields by allowing for independent microenvironments to conduct drug screening at the single cell level. However, current microfluidic sorting devices suffer from drawbacks such as high voltage requirements (e.g., >200 Vpp), low biocompatibility, and/or low throughput. In this article, a single-phase focused transducer (SPFT)-based acoustofluidic chip is introduced, which outperforms many microfluidic droplet sorting devices through high energy transmission efficiency, high accuracy, and high biocompatibility. The SPFT-based sorter can be driven with an input power lower than 20 Vpp and maintain a postsorting cell viability of 93.5%. The SPFT sorter can achieve a throughput over 1000 events per second and a sorting purity up to 99.2%. The SPFT sorter is utilized here for the screening of doxorubicin cytotoxicity on cancer and noncancer cells, proving its drug screening capability. Overall, the SPFT droplet sorting device shows great potential for fast, precise, and biocompatible drug screening.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Supervivencia Celular , Dispositivos Laboratorio en un Chip , Transductores
7.
Small ; 17(47): e2102907, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34665526

RESUMEN

Implant-associated bacterial infections significantly impair the integration between titanium and soft tissues. Traditional antibacterial modifications of titanium implants are able to eliminate bacteria, but the resulting pro-inflammatory reactions are usually ignored, which still poses potential risks to human bodies. Here, a dual drug-loading system on titanium has been developed via the adhesion of a catechol motif-modified methacrylated gelatin hydrogel onto TiO2 nanotubes. Then synthesized CaO2 nanoparticles (NPs) are embedded into the hydrogel, and interleukin-4 (IL-4) is loaded into the nanotubes to achieve both antibacterial and anti-inflammatory properties. The dual drug-loading system can eliminate Staphylococcus aureus (S. aureus) rapidly, attributed to the H2 O2 release from CaO2 NPs. The potential cytotoxicity of CaO2 NPs is also remarkably reduced after being embedded into the hydrogel. More importantly, with the gradual release of IL-4, the dual drug-loading system is capable of modulating pro-inflammatory reactions by inducing M2 phenotype polarization of macrophages. In a subcutaneous infection model, the S. aureus contamination is effectively resolved after 2 days, and the resulting pro-inflammatory reactions are also inhibited after 7 days. Finally, the damaged tissue is significantly recovered. Taken together, the dual drug-loading system exhibits great therapeutic potential in effectively killing pathogens and inhibiting the resulting pro-inflammatory reactions.


Asunto(s)
Nanopartículas , Nanotubos , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Bacterias , Humanos , Peróxidos , Staphylococcus aureus , Titanio
8.
Nat Methods ; 15(12): 1021-1028, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30478321

RESUMEN

Acoustic tweezers are a versatile set of tools that use sound waves to manipulate bioparticles ranging from nanometer-sized extracellular vesicles to millimeter-sized multicellular organisms. Over the past several decades, the capabilities of acoustic tweezers have expanded from simplistic particle trapping to precise rotation and translation of cells and organisms in three dimensions. Recent advances have led to reconfigured acoustic tweezers that are capable of separating, enriching, and patterning bioparticles in complex solutions. Here, we review the history and fundamentals of acoustic-tweezer technology and summarize recent breakthroughs.


Asunto(s)
Acústica , Disciplinas de las Ciencias Biológicas , Modelos Biológicos , Pinzas Ópticas/normas , Animales , Humanos
9.
Small ; 16(48): e2005179, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33174375

RESUMEN

Acoustofluidics, the fusion of acoustics and microfluidic techniques, has recently seen increased research attention across multiple disciplines due in part to its capabilities in contactless, biocompatible, and precise manipulation of micro-/nano-objects. Herein, a bimodal signal amplification platform which relies on acoustofluidics-induced enrichment of nanoparticles is introduced. The dual-function biosensor can perform sensitive immunofluorescent or surface-enhanced Raman spectroscopy (SERS) detection. The platform functions by using surface acoustic waves to concentrate nanoparticles at either the center or perimeter of a glass capillary; the concentration location is adjusted simply by varying the input frequency. The immunofluorescence assay is achieved by concentrating fluorescent analytes and functionalized nanoparticles at the center of the microchannel, thereby improving the visibility of the fluorescent output. By modifying the inner wall of the glass capillary with plasmonic Ag nanoparticle-deposited ZnO nanorod arrays and focusing analytes toward the perimeter of the microchannel, SERS sensing using the same device setup is achieved. Nanosized exosomes are used as a proof-of-concept to validate the performance of the acoustofluidic bimodal biosensor. With its sample-enrichment functionality, bimodal sensing, short processing time, and minute sample consumption, the acoustofluidic chip holds great potential for the development of lab-on-a-chip based analysis systems in many real-world applications.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Dispositivos Laboratorio en un Chip , Plata , Espectrometría Raman
10.
J Biomech Eng ; 142(3)2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32006021

RESUMEN

Density and mechanical properties (e.g., compressibility or bulk modulus) are important cellular biophysical markers. As such, developing a method to separate cells directly based on these properties can benefit various applications including biological research, diagnosis, prognosis, and therapeutics. As a potential solution, surface acoustic wave (SAW)-based cell separation has demonstrated advantages in terms of biocompatibility and compact device size. However, most SAW-reliant cell separations are achieved using an entangled effect of density, various mechanical properties, and size. In this work, we demonstrate SAW-based separation of cells/particles based on their density and compressibility, irrespective of their sizes, by manipulating the acoustic properties of the fluidic medium. Using our platform, SAW-based separation is achieved by varying the dimensions of the microfluidic channels, the wavelengths of acoustic signals, and the properties of the fluid media. Our method was applied to separate paraformaldehyde-treated and fresh Hela cells based on differences in mechanical properties; a recovery rate of 85% for fixed cells was achieved. It was also applied to separate red blood cells (RBCs) and white blood cells (WBCs) which have different densities. A recovery rate of 80.5% for WBCs was achieved.


Asunto(s)
Acústica , Separación Celular , Eritrocitos , Células HeLa , Humanos
11.
Proc Natl Acad Sci U S A ; 114(40): 10584-10589, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923936

RESUMEN

Exosomes are nanoscale extracellular vesicles that play an important role in many biological processes, including intercellular communications, antigen presentation, and the transport of proteins, RNA, and other molecules. Recently there has been significant interest in exosome-related fundamental research, seeking new exosome-based biomarkers for health monitoring and disease diagnoses. Here, we report a separation method based on acoustofluidics (i.e., the integration of acoustics and microfluidics) to isolate exosomes directly from whole blood in a label-free and contact-free manner. This acoustofluidic platform consists of two modules: a microscale cell-removal module that first removes larger blood components, followed by extracellular vesicle subgroup separation in the exosome-isolation module. In the cell-removal module, we demonstrate the isolation of 110-nm particles from a mixture of micro- and nanosized particles with a yield greater than 99%. In the exosome-isolation module, we isolate exosomes from an extracellular vesicle mixture with a purity of 98.4%. Integrating the two acoustofluidic modules onto a single chip, we isolated exosomes from whole blood with a blood cell removal rate of over 99.999%. With its ability to perform rapid, biocompatible, label-free, contact-free, and continuous-flow exosome isolation, the integrated acoustofluidic device offers a unique approach to investigate the role of exosomes in the onset and progression of human diseases with potential applications in health monitoring, medical diagnosis, targeted drug delivery, and personalized medicine.


Asunto(s)
Acústica , Células Sanguíneas/química , Exosomas/química , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Células Sanguíneas/citología
12.
Anal Chem ; 91(1): 757-767, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30561981

RESUMEN

Acoustics has a broad spectrum of applications, ranging from noise cancelation to ultrasonic imaging. In the past decade, there has been increasing interest in developing acoustic-based methods for biological and biomedical applications. This Perspective summarizes the recent progress in applying acoustofluidic methods (i.e., the fusion of acoustics and microfluidics) to bioanalytical chemistry. We describe the concepts of acoustofluidics and how it can be tailored to different types of bioanalytical applications, including sample concentration, fluorescence-activated cell sorting, label-free cell/particle separation, and fluid manipulation. Examples of each application are given, and the benefits and limitations of these methods are discussed. Finally, our perspectives on the directions that developing solutions should take to address the bottlenecks in the acoustofluidic applications in bioanalytical chemistry are presented.


Asunto(s)
Acústica , Técnicas Analíticas Microfluídicas/métodos , Animales , Línea Celular Tumoral , Separación Celular/instrumentación , Separación Celular/métodos , Humanos , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación
13.
Adv Funct Mater ; 29(13)2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-31123431

RESUMEN

Metasurfaces open up unprecedented potential for wave engineering using subwavelength sheets. However, a severe limitation of current acoustic metasurfaces is their poor reconfigurability to achieve distinct functions on demand. Here a programmable acoustic metasurface that contains an array of tunable subwavelength unit cells to break the limitation and realize versatile two-dimensional wave manipulation functions is reported. Each unit cell of the metasurface is composed of a straight channel and five shunted Helmholtz resonators, whose effective mass can be tuned by a robust fluidic system. The phase and amplitude of acoustic waves transmitting through each unit cell can be modulated dynamically and continuously. Based on such mechanism, the metasurface is able to achieve versatile wave manipulation functions, by engineering the phase and amplitude of transmission waves in the subwavelength scale. Through acoustic field scanning experiments, multiple wave manipulation functions, including steering acoustic waves, engineering acoustic beams, and switching on/off acoustic energy flow by using one design of metasurface are visually demonstrated. This work extends the metasurface research and holds great potential for a wide range of applications including acoustic imaging, communication, levitation, and tweezers.

14.
Trends Analyt Chem ; 117: 280-290, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32461706

RESUMEN

Cellular analysis is a central concept for both biology and medicine. Over the past two decades, acoustofluidic technologies, which marry acoustic waves with microfluidics, have significantly contributed to the development of innovative approaches for cellular analysis. Acoustofluidic technologies enable precise manipulations of cells and the fluids that confine them, and these capabilities have been utilized in many cell analysis applications. In this review article, we examine various applications where acoustofluidic methods have been implemented, including cell imaging, cell mechanotyping, circulating tumor cell phenotyping, sample preparation in clinics, and investigation of cell-cell interactions and cell-environment responses. We also provide our perspectives on the technological advantages, limitations, and potential future directions for this innovative field of methods.

15.
Proc Natl Acad Sci U S A ; 113(6): 1522-7, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26811444

RESUMEN

The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving "acoustic tweezers" in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner.


Asunto(s)
Impresión Tridimensional , Análisis de la Célula Individual/métodos , Sonido , Calibración , Supervivencia Celular , Simulación por Computador , Células HeLa , Humanos , Microfluídica , Análisis Numérico Asistido por Computador , Pinzas Ópticas , Vibración
16.
Small ; 14(40): e1801996, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30168662

RESUMEN

Microfluidic fluorescence-activated cell sorters (µFACS) have attracted considerable interest because of their ability to identify and separate cells in inexpensive and biosafe ways. Here a high-performance µFACS is presented by integrating a standing surface acoustic wave (SSAW)-based, 3D cell-focusing unit, an in-plane fluorescent detection unit, and an SSAW-based cell-deflection unit on a single chip. Without using sheath flow or precise flow rate control, the SSAW-based cell-focusing technique can focus cells into a single file at a designated position. The tight focusing of cells enables an in-plane-integrated optical detection system to accurately distinguish individual cells of interest. In the acoustic-based cell-deflection unit, a focused interdigital transducer design is utilized to deflect cells from the focused stream within a minimized area, resulting in a high-throughput sorting ability. Each unit is experimentally characterized, respectively, and the integrated SSAW-based FACS is used to sort mammalian cells (HeLa) at different throughputs. A sorting purity of greater than 90% is achieved at a throughput of 2500 events s-1 . The SSAW-based FACS is efficient, fast, biosafe, biocompatible and has a small footprint, making it a competitive alternative to more expensive, bulkier traditional FACS.


Asunto(s)
Citometría de Flujo/métodos , Técnicas Analíticas Microfluídicas/métodos , Sonido , Células HeLa , Humanos
17.
Small ; 14(32): e1801131, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29968402

RESUMEN

The study of circulating tumor cells (CTCs) offers pathways to develop new diagnostic and prognostic biomarkers that benefit cancer treatments. In order to fully exploit and interpret the information provided by CTCs, the development of a platform is reported that integrates acoustics and microfluidics to isolate rare CTCs from peripheral blood in high throughput while preserving their structural, biological, and functional integrity. Cancer cells are first isolated from leukocytes with a throughput of 7.5 mL h-1 , achieving a recovery rate of at least 86% while maintaining the cells' ability to proliferate. High-throughput acoustic separation enables statistical analysis of isolated CTCs from prostate cancer patients to be performed to determine their size distribution and phenotypic heterogeneity for a range of biomarkers, including the visualization of CTCs with a loss of expression for the prostate specific membrane antigen. The method also enables the isolation of even rarer, but clinically important, CTC clusters.


Asunto(s)
Acústica , Separación Celular/métodos , Células Neoplásicas Circulantes/patología , Línea Celular Tumoral , Simulación por Computador , Dimetilpolisiloxanos/química , Vidrio/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Leucocitos/patología , Masculino , Análisis Numérico Asistido por Computador , Fenotipo , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/patología , Reología
18.
J Micromech Microeng ; 28(2)2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30479458

RESUMEN

We present on-chip acoustic actuation of in situ fabricated artificial cilia. Arrays of cilia structures are UV polymerized inside a microfluidic channel using a photocurable polyethylene glycol (PEG) polymer solution and photomasks. During polymerization, cilia structures are attached to a silane treated glass surface inside the microchannel. Then, the cilia structures are actuated using acoustic vibrations at 4.6 kHz generated by piezo transducers. As a demonstration of a practical application, DI water and fluorescein dye solutions are mixed inside a microfluidic channel. Using pulses of acoustic excitations, and locally fabricated cilia structures within a certain region of the microchannel, a waveform of mixing behavior is obtained. This result illustrates one potential application wherein researchers can achieve spatiotemporal control of biological microenvironments in cell stimulation studies. These acoustically actuated, in situ fabricated, cilia structures can be used in many on-chip applications in biological, chemical and engineering studies.

19.
Proc Natl Acad Sci U S A ; 112(1): 43-8, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25535339

RESUMEN

The interactions between pairs of cells and within multicellular assemblies are critical to many biological processes such as intercellular communication, tissue and organ formation, immunological reactions, and cancer metastasis. The ability to precisely control the position of cells relative to one another and within larger cellular assemblies will enable the investigation and characterization of phenomena not currently accessible by conventional in vitro methods. We present a versatile surface acoustic wave technique that is capable of controlling the intercellular distance and spatial arrangement of cells with micrometer level resolution. This technique is, to our knowledge, among the first of its kind to marry high precision and high throughput into a single extremely versatile and wholly biocompatible technology. We demonstrated the capabilities of the system to precisely control intercellular distance, assemble cells with defined geometries, maintain cellular assemblies in suspension, and translate these suspended assemblies to adherent states, all in a contactless, biocompatible manner. As an example of the power of this system, this technology was used to quantitatively investigate the gap junctional intercellular communication in several homotypic and heterotypic populations by visualizing the transfer of fluorescent dye between cells.


Asunto(s)
Comunicación Celular , Células Endoteliales/citología , Sonido , Adhesión Celular , Colorantes/metabolismo , Células Endoteliales/metabolismo , Uniones Comunicantes/metabolismo , Células HEK293 , Humanos , Propiedades de Superficie
20.
Proc Natl Acad Sci U S A ; 112(5): 1368-73, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25605889

RESUMEN

The de novo purine biosynthetic pathway relies on six enzymes to catalyze the conversion of phosphoribosylpyrophosphate to inosine 5'-monophosphate. Under purine-depleted conditions, these enzymes form a multienzyme complex known as the purinosome. Previous studies have revealed the spatial organization and importance of the purinosome within mammalian cancer cells. In this study, time-lapse fluorescence microscopy was used to investigate the cell cycle dependency on purinosome formation in two cell models. Results in HeLa cells under purine-depleted conditions demonstrated a significantly higher number of cells with purinosomes in the G1 phase, which was further confirmed by cell synchronization. HGPRT-deficient fibroblast cells also exhibited the greatest purinosome formation in the G1 phase; however, elevated levels of purinosomes were also observed in the S and G2/M phases. The observed variation in cell cycle-dependent purinosome formation between the two cell models tested can be attributed to differences in purine biosynthetic mechanisms. Our results demonstrate that purinosome formation is closely related to the cell cycle.


Asunto(s)
Ciclo Celular , Purinas/biosíntesis , Células HeLa , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Microscopía Fluorescente , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA