Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 31(10): 16770-16780, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157749

RESUMEN

For wide dynamic range gas concentration detection based on tunable diode laser absorption spectroscopy (TDLAS), direct absorption spectroscopy (DAS) and wavelength modulation spectroscopy (WMS) are usually used in combination. However, in some application scenarios such as high-speed flow field detection, natural gas leakage, or industrial production, the requirements of wide-range, fast response and calibration-free must be met. Taking applicability and cost of TDALS-based sensor into consideration, a method of optimized direct absorption spectroscopy (ODAS) based on signal correlation and spectral reconstruction is developed in this paper. This method can achieve adaptive selection of the optimal benchmark spectrum for spectral reconstruction. Moreover, methane (CH4) is taken as an example to carry out the experimental verification. Experimental results proved that the method satisfies wide dynamic range detection of more than 4 orders of magnitude. It is worth noting that when measuring large absorbance with concentration of 75 × 104 ppm with DAS and ODAS method, respectively, the maximum value of residual is reduced from 3.43 to 0.07. Furthermore, whether measuring gas of small or large absorbance with different concentrations, which vary from 100 ppm to 75 × 104 ppm, the correlation coefficient between standard concentrations and inverted concentrations is 0.997, showing the linear consistency of the method in wide dynamic range. In addition, the absolute error is 1.81 × 104 ppm when measuring large absorbance of 75 × 104 ppm. It greatly improves the accuracy and reliability with the new method. In summary, the ODAS method can not only fulfill the measurement of gas concentration in wide range, but also further expand the application prospects of TDLAS.

2.
Indian J Microbiol ; 54(1): 108-10, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24426175

RESUMEN

This study focuses on the characteristic of strains with anomalous color conidium and compares with normal color conidium. Comparative analysis of enzymes activity and extracellular proteins revealed that A. oryzae with anomalous color conidium was not different from the strain with normal color conidium. In addition, A. oryzae with anomalous color conidium could not influence the palatability and quality of the soy sauce. These findings provide an insight into A. oryzae with anomalous color conidium.

3.
Environ Pollut ; 344: 123299, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38185355

RESUMEN

Considering the interference of the complexity of underground environment to the bioremediation scheme, an evaluation model for bioremediation technology in the soil source area of oil contaminated sites was established. On the basis of traditional CDE model, a compartment model was coupled to express the adsorption and degradation process, and the spatial expression of biodegradation was enriched through environment-dependent factors. The visualization of the model was achieved based on COMSOL Multiphysics software platform. Two sets of indoor sandbox experiments on natural attenuation and bioaugmentation were carried out for 120 days to verify the prediction function of the model. The results showed that bioaugmentation greatly improved the remediation effect. Petroleum hydrocarbons with different occurrence states exhibited different spatial distributions under the influence of environmental factors. The prediction accuracy evaluation results of total petroleum hydrocarbons, bio available hydrocarbons and non extractable hydrocarbons showed excellent fitting degree, and the model had a good prediction function for petroleum hydrocarbon in soil under different bioremediation scenarios. This model can be used to screen bioremediation technical schemes, prevent pollution and assess risk of petroleum hydrocarbon contaminated sites.


Asunto(s)
Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Petróleo/metabolismo , Suelo , Contaminantes del Suelo/análisis , Microbiología del Suelo , Hidrocarburos/metabolismo
4.
Luminescence ; 27(1): 34-8, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21674749

RESUMEN

The adenosine triphosphate (ATP) bioluminescence rapid determination method may be useful for enumerating the total viable count (TVC) in soy sauce, as it has been previously used in food and beverages for sanitation with good precision. However, many factors interfere with the correlation between total aerobic plate counts and ATP bioluminescence. This study investigated these interfering factors, including ingredients of soy sauce and bacteria at different physiological stages. Using the ATP bioluminescence method, TVC was obtained within 4 h, compared to 48 h required for the conventional aerobic plate count (APC) method. Our results also indicated a high correlation coefficient (r = 0.90) between total aerobic plate counts and ATP bioluminescence after filtration and resuscitation with special medium. The limit of quantification of the novel detection method is 100 CFU/mL; there is a good linear correlation between the bioluminescence intensity and TVC in soy sauce in the range 1 × 10(2) -3 × 10(4) CFU/mL and even wider. The method employed a luminescence recorder (Tristar LB-941) and 96-well plates and could analyse 50-100 samples simultaneously at low cost. In this study, we evaluated and eliminated the interfering factors and made the ATP bioluminescence rapid method available for enumerating TVC in soy sauce.


Asunto(s)
Mediciones Luminiscentes , Alimentos de Soja/microbiología , Adenosina Trifosfato , Bacterias/citología , Recuento de Colonia Microbiana , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA