Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Learn Mem ; 21(3): 153-60, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24549570

RESUMEN

The dentate gyrus (DG) of the hippocampus is critical for spatial memory and is also thought to be involved in the formation of drug-related associative memory. Here, we attempt to test an aspect of the Gateway Hypothesis, by studying the effect of consecutive exposure to nicotine and cocaine on long-term synaptic potentiation (LTP) in the DG. We find that a single injection of cocaine does not alter LTP. However, pretreatment with nicotine followed by a single injection of cocaine causes a substantial enhancement of LTP. This priming effect of nicotine is unidirectional: There is no enhancement of LTP if cocaine is administrated prior to nicotine. The facilitation induced by nicotine and cocaine can be blocked by oral administration of the dopamine D1/D5 receptor antagonist (SKF 83566) and enhanced by the D1/D5 agonist (SKF 38393). Application of the histone deacetylation inhibitor suberoylanilide hydroxamic acid (SAHA) simulates the priming effect of nicotine on cocaine. By contrast, the priming effect of nicotine on cocaine is blocked in genetically modified mice that are haploinsufficient for the CREB-binding protein (CBP) and possess only one functional CBP allele and therefore exhibit a reduction in histone acetylation. These results demonstrate that the DG of the hippocampus is an important brain region contributing to the priming effect of nicotine on cocaine. Moreover, both activation of dopamine-D1 receptor/PKA signaling pathway and histone deacetylation/CBP mediated transcription are required for the nicotine priming effect in the DG.


Asunto(s)
Cocaína/farmacología , Giro Dentado/efectos de los fármacos , Histonas/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Nicotina/farmacología , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D5/metabolismo , Animales , Giro Dentado/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histonas/efectos de los fármacos , Ácidos Hidroxámicos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D5/antagonistas & inhibidores , Vorinostat
2.
Front Cell Neurosci ; 14: 207, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32742260

RESUMEN

A recurrent and devastating feature of addiction to a drug of abuse is its persistence, which is mediated by maladaptive long-term memories of the highly pleasurable experience initially associated with the consumption of the drug. We have recently found that members of the CPEB family of proteins (Cytoplasmic Polyadenylation Element-Binding Proteins) are involved in the maintenance of spatial memory. However, their possible role in the maintenance of memories that sustain addictive behavior has yet to be explored. Little is known about any of the mechanisms for maintaining memories for addictive behavior. To address the mechanisms whereby addictive behavior is maintained over time, we utilized a conditional transgenic mouse model expressing a dominant-negative version of CPEB1 that abolishes the activity in the forebrain of two of the four CPEB isoforms (CPEB1 and CPEB3). We found that, following cocaine administration, these dominant-negative (DN) CPEB mice showed a significant decrease, when compared to wild type (WT) mice, in both locomotor sensitizations and conditioned place preference (CPP), two indices of addictive behavior. Supporting these behavioral results, we also found a difference between WT and DN-CPEB1-3 mice in the cocaine-induced synaptic depression in the core of the Nucleus Accumbens (NAc). Finally, we found that (1) CPEB is reduced in transgenic mice following cocaine injections and that (2) FosB, known for its contribution to establishing the addictive phenotype, when its expression in the striatum is increased by drug administration, is a novel target of CPEBs molecules. Thus, our study highlights how CPEB1 and CPEB3 act on target mRNAs to build the neuroadaptative implicit memory responses that lead to the development of the cocaine addictive phenotypes in mammals.

3.
Learn Mem ; 15(8): 603-10, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18685152

RESUMEN

Nicotine, in the form of tobacco, is the most commonly used drug of abuse. In addition to its rewarding properties, nicotine also affects many cognitive and emotional processes that involve several brain regions, including hippocampus and amygdala. Long-term changes in synaptic strength in these brain regions after drug exposure may be importantly correlated with behavioral changes induced by nicotine. Here, we study the effect of chronic oral administration of nicotine on the long-term synaptic potentiation in the amygdala, a key structure for emotional memory. We find that oral administration of nicotine for 7 d produces a significant enhancement of LTP in the amygdala. This facilitation is pathway specific: Nicotine selectively facilitates LTP in the cortical-lateral amygdala pathway, but not the thalamic-lateral and the lateral-basolateral synaptic pathway. The synaptic facilitation induced by a 7-d exposure to nicotine is long-lasting, it persists for 72 h after cessation of nicotine but decays 8 d after its cessation. In contrast, a shorter exposure of nicotine (24 h) induces only a short-lasting facilitation of synaptic plasticity that dissipates 24 and 72 h after cessation of nicotine. The facilitation of LTP in the amygdala after exposure to nicotine is mediated by removal of GABAergic inhibition, is dependent on the activation NMDA receptors, and can be prevented by blocking either alpha7 or beta2 nACh receptors. Our results indicate that chronic exposure to nicotine can promote the induction of long-lasting modifications of synapses in a specific pathway in the amygdala. These changes in synaptic plasticity may contribute to the complex neural adaptations and behaviors caused by nicotine.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Amígdala del Cerebelo/fisiología , Animales , Antagonistas Colinérgicos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Microelectrodos , Técnicas de Cultivo de Órganos , Tiempo
4.
J Neurosci ; 27(12): 3111-9, 2007 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-17376972

RESUMEN

The amygdala is a critical site for the acquisition of learned fear memory in mammals, and the formation and long-term maintenance of fear memories are thought to be associated with changes of synaptic strength in the amygdala. Here we report that serotonin (5-hydroxytryptamine; 5-HT), a modulatory neurotransmitter known to be linked to learned fearful and emotional behavior, has dual effects on excitatory synaptic transmission in the basolateral amygdala. There is an early depression of synaptic transmission lasting 30-50 min, mediated by 5-HT1A, and a late, long-lasting facilitation lasting >5 h in slice recordings, mediated by the 5-HT4 receptor. 5-HT late phase long-term potentiation (L-LTP) is blocked by inhibitors of either protein kinase A (PKA) and/or mitogen-activated kinase (MAPK) and requires new protein synthesis and gene transcription. Moreover, the 5-HT-induced L-LTP in neurons of amygdala is blocked by the actin inhibitor cytochalasin D, suggesting that 5-HT stimulates a cytoskeletal rearrangement. These results show, for the first time, that 5-HT can produce long-lasting facilitation of synaptic transmission in the amygdala and provides evidence for the possible synaptic role of 5-HT in long-term memory for learned fear.


Asunto(s)
Amígdala del Cerebelo/enzimología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Potenciación a Largo Plazo/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Serotonina/fisiología , Amígdala del Cerebelo/efectos de los fármacos , Animales , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Serotonina/farmacología
5.
Learn Mem ; 14(7): 497-503, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17626908

RESUMEN

Activity-dependent changes in synaptic efficacy are thought to be the key cellular mechanism for the formation and storage of both explicit and implicit memory. Different patterns of stimulation can elicit different changes in the efficiency on excitatory synaptic transmission. Here, we examined the synaptic changes in the amygdala of adult mice produced by low-frequency stimulation (1 Hz, 15 min, LFS). We first compared the synaptic changes induced by LFS in three different synaptic pathways of amygdala: cortical-lateral amygdala, thalamic-lateral amygdala, and lateral-basolateral amygdala pathways. We find that the plastic changes induced by LFS are different between synaptic pathways. Low-frequency stimulation selectively elicits a slow onset and protein synthesis-dependent late-phase LTP in the cortical-lateral amygdala pathway, but not in the thalamic-lateral or lateral-basolateral pathways. We next analyzed LTP induced by LFS in the cortical-lateral amygdala pathway and found that three PKA-coupling neurotransmitter receptors are involved: 5-HT4, Dopamine D1, and beta-adrenergic receptors. Antagonists of these receptors block the LFS L-LTP, but the effects of agonists of these receptors are clearly different. These results indicate that the threshold for the induction of LFS L-LTP is different among these pathways and that the maintenance of LFS L-LTP requires a cross-talk among multiple neurotransmitters.


Asunto(s)
Amígdala del Cerebelo/citología , Amígdala del Cerebelo/enzimología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Estimulación Eléctrica , Potenciación a Largo Plazo/fisiología , Animales , Anisomicina/farmacología , Corteza Cerebral/citología , AMP Cíclico/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas , Técnicas de Cultivo de Órganos , Inhibidores de la Síntesis de la Proteína/farmacología , Receptor Cross-Talk/fisiología , Receptores Adrenérgicos beta/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Transducción de Señal/fisiología , Transmisión Sináptica/fisiología , Tálamo/citología
6.
Neuron ; 86(6): 1433-48, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26074003

RESUMEN

Consolidation of long-term memories depends on de novo protein synthesis. Several translational regulators have been identified, and their contribution to the formation of memory has been assessed in the mouse hippocampus. None of them, however, has been implicated in the persistence of memory. Although persistence is a key feature of long-term memory, how this occurs, despite the rapid turnover of its molecular substrates, is poorly understood. Here we find that both memory storage and its underlying synaptic plasticity are mediated by the increase in level and in the aggregation of the prion-like translational regulator CPEB3 (cytoplasmic polyadenylation element-binding protein). Genetic ablation of CPEB3 impairs the maintenance of both hippocampal long-term potentiation and hippocampus-dependent spatial memory. We propose a model whereby persistence of long-term memory results from the assembly of CPEB3 into aggregates. These aggregates serve as functional prions and regulate local protein synthesis necessary for the maintenance of long-term memory.


Asunto(s)
Hipocampo/fisiología , Memoria/fisiología , Proteínas de Unión al ARN/metabolismo , Animales , Ansiedad/genética , Condicionamiento Psicológico/fisiología , Conducta Exploratoria/fisiología , Miedo/efectos de los fármacos , Miedo/fisiología , Ácido Glutámico/farmacología , Hipocampo/citología , Hipocampo/ultraestructura , Técnicas In Vitro , Locomoción/genética , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/genética , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Neuronas/fisiología , Fosfopiruvato Hidratasa/metabolismo , Proteínas de Unión al ARN/genética , Tiempo de Reacción/genética , Tiempo de Reacción/fisiología
7.
Neuropharmacology ; 74: 126-34, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23597510

RESUMEN

In human populations, there is a well-defined sequence of involvement in drugs of abuse, in which the use of nicotine or alcohol precedes the use of marijuana, which in turn, precedes the use of cocaine. The term "Gateway Hypothesis" describes this developmental sequence of drug involvement. In prior work, we have developed a mouse model to study the underlying metaplastic behavioral, cellular and molecular mechanisms by which exposure to one drug, namely nicotine, affects the response to another drug, namely cocaine. We found that nicotine enhances significantly the changes in synaptic plasticity in the striatum induced by cocaine (Levine et al., 2011). Here we ask: does the metaplastic effect of nicotine on cocaine also apply in the amygdala, a brain region that is involved in the orchestration of emotions and in drug addiction? We find that pretreatment with nicotine enhances long-term synaptic potentiation (LTP) in response to cocaine in the amygdala. Both short-term (1 day) and long-term (7 days) pre-exposure to nicotine facilitate the induction of LTP by cocaine. The effect of nicotine on LTP is unidirectional; exposure to nicotine following treatment with cocaine is ineffective. This metaplastic effect of nicotine on cocaine is long lasting but reversible. The facilitation of LTP can be obtained for 24 but not 40 days after cessation of nicotine. As is the case in the striatum, pretreatment with Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, simulates the priming effect of nicotine. These results provide further evidence that the priming effect of nicotine may be achieved, at least partially, by the inhibition of histone acetylation and indicate that the amygdala appears to be an important brain structure for the processing of the metaplastic effect of nicotine on cocaine. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Cocaína/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Nicotina/farmacología , Aconitina/análogos & derivados , Aconitina/farmacología , Amígdala del Cerebelo/fisiología , Animales , Hidrocarburos Aromáticos con Puentes/farmacología , Dihidro-beta-Eritroidina/farmacología , Inhibidores de Captación de Dopamina/farmacología , Sinergismo Farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Agonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/farmacología , Compuestos de Espiro/farmacología , Factores de Tiempo , Vorinostat , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/antagonistas & inhibidores , Receptor Nicotínico de Acetilcolina alfa 7/fisiología
8.
Sci Transl Med ; 3(107): 107ra109, 2011 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22049069

RESUMEN

In human populations, cigarettes and alcohol generally serve as gateway drugs, which people use first before progressing to marijuana, cocaine, or other illicit substances. To understand the biological basis of the gateway sequence of drug use, we developed an animal model in mice and used it to study the effects of nicotine on subsequent responses to cocaine. We found that pretreatment of mice with nicotine increased the response to cocaine, as assessed by addiction-related behaviors and synaptic plasticity in the striatum, a brain region critical for addiction-related reward. Locomotor sensitization was increased by 98%, conditioned place preference was increased by 78%, and cocaine-induced reduction in long-term potentiation (LTP) was enhanced by 24%. The responses to cocaine were altered only when nicotine was administered first, and nicotine and cocaine were then administered concurrently. Reversing the order of drug administration was ineffective; cocaine had no effect on nicotine-induced behaviors and synaptic plasticity. Nicotine primed the response to cocaine by enhancing its ability to induce transcriptional activation of the FosB gene through inhibition of histone deacetylase, which caused global histone acetylation in the striatum. We tested this conclusion further and found that a histone deacetylase inhibitor simulated the actions of nicotine by priming the response to cocaine and enhancing FosB gene expression and LTP depression in the nucleus accumbens. Conversely, in a genetic mouse model characterized by reduced histone acetylation, the effects of cocaine on LTP were diminished. We achieved a similar effect by infusing a low dose of theophylline, an activator of histone deacetylase, into the nucleus accumbens. These results from mice prompted an analysis of epidemiological data, which indicated that most cocaine users initiate cocaine use after the onset of smoking and while actively still smoking, and that initiating cocaine use after smoking increases the risk of becoming dependent on cocaine, consistent with our data from mice. If our findings in mice apply to humans, a decrease in smoking rates in young people would be expected to lead to a decrease in cocaine addiction.


Asunto(s)
Cocaína/toxicidad , Epigénesis Genética/efectos de los fármacos , Nicotina/toxicidad , Animales , Trastornos Relacionados con Cocaína/genética , Trastornos Relacionados con Cocaína/metabolismo , Epigénesis Genética/genética , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Teofilina/farmacología
9.
Learn Mem ; 13(3): 298-306, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16741282

RESUMEN

Protein synthesis-dependent late phase of LTP (L-LTP) is typically induced by repeated high-frequency stimulation (HFS). This form of L-LTP is reduced in the aged animal and is positively correlated with age-related memory loss. Here we report a novel form of protein synthesis-dependent late phase of LTP in the CA1 region of hippocampus induced by a brief 1-Hz paired-pulse stimulation (PP-1 Hz, 1 min). In contrast to L-LTP induced by HFS, the late phase of PP-1 Hz LTP does not exist in young adult animals. Rather, it emerges and becomes enhanced in an age-related way. Thus, in 1.5- to 2-mo-old mice, a brief PP-1 Hz stimulation induces only a short lasting LTP, decaying to baseline in about 90 min. By contrast, PP-1 Hz stimulation induces an enduring and protein synthesis dependent LTP in 12- to 18-mo-old mice. The PP-1 Hz-induced L-LTP is dependent on NMDA receptor activation, requires voltage-dependent calcium channels, and is modulated by dopamine D1/D5 receptors. Because memory ability declines with aging, the age-related enhancement of L-LTP induced by PP-1 Hz stimulation indicates that this form of L-LTP appears to be inversely correlated with memory ability.


Asunto(s)
Envejecimiento/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Animales , Canales de Calcio/fisiología , Estimulación Eléctrica/métodos , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Biosíntesis de Proteínas/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología
10.
Learn Mem ; 12(6): 587-93, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16287724

RESUMEN

The late phase of LTP (L-LTP) is typically induced by repeated high-frequency stimulation. This form of LTP requires activation of transcription and translation and results in the cell-wide distribution of gene products that can be captured by other marked synapses. Here we report that theta frequency stimulation (5 Hz, 30 sec) applied to the Schaeffer-collateral pathway can induce a form of late phase of LTP that is restricted locally to the dendritic compartment. The late phase of theta frequency LTP is maintained even in isolated CA1 dendrites and is dependent on dendritic translation and actin cytoskeletal regulation, but is independent of transcription. This local form of L-LTP is not accessible to synaptic capture by other synapses, indicating that this form of LTP is restricted to the synaptic compartment. These results indicate that different patterns of synaptic stimulation can induce distinct forms of LTP that may have different roles in memory storage.


Asunto(s)
Estimulación Eléctrica/métodos , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Vías Nerviosas/fisiología , Ritmo Teta , Actinas/biosíntesis , Animales , Dendritas/metabolismo , Hipocampo/citología , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/citología , Biosíntesis de Proteínas/fisiología , Transducción de Señal/fisiología , Transmisión Sináptica/fisiología
11.
Proc Natl Acad Sci U S A ; 102(1): 232-7, 2005 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-15623558

RESUMEN

The subiculum (SB) is the principal target of the axons of the CA1 pyramidal cells and serves as the final relay in the trisynaptic loop between the entorhinal cortex and the hippocampus. We have examined synaptic plasticity in the synaptic pathway between the CA1 pyramidal cells and the SB in hippocampal slices and compared it under the same experimental condition with the synaptic plasticity in Shaffer collateral pathway (CA3-CA1). We find that the frequency response curve of synaptic strength induced by prolonged low-frequency stimulation (1-5 Hz) is systematically up-shifted from Shaffer collateral to the CA1-SB pathway. The up-regulation of synaptic strength is mediated by the activity-dependent modulation by beta-adrenergic transmission. Because the CA3-CA1 and the CA1-SB synaptic pathways are in series and the beta-adrenergic modulation is region-specific, this modulation seems to be involved in the selective control of signal transmission between the different regions of hippocampus.


Asunto(s)
Hipocampo/fisiología , Potenciales de la Membrana/fisiología , Sinapsis/fisiología , Animales , Ratones , Receptores Adrenérgicos beta/fisiología , Factores de Tiempo
12.
Proc Natl Acad Sci U S A ; 102(26): 9365-70, 2005 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-15967982

RESUMEN

The synaptic vesicle protein Rab3A is a small GTP-binding protein that interacts with rabphilin and RIM1alpha, two presynaptic substrates of protein kinase A (PKA). Mice lacking RIM1alpha and Rab3A have a defect in PKA-dependent and NMDA receptor (NMDAR)-independent presynaptic long-term potentiation (LTP) at hippocampal mossy-fiber and cerebellar parallel-fiber synapses. In contrast, the NMDAR-dependent and PKA-independent early phase of LTP at hippocampal CA3-CA1 synapses does not require these presynaptic proteins. Here, we ask whether Rab3A and RIM1alpha participate in forms of LTP that require both PKA and NMDAR activation. We find that Rab3A is necessary for corticoamygdala LTP and late-phase LTP at CA3-CA1 synapses, two forms of LTP that require NMDAR and PKA activation. The latter form of LTP also requires RIM1alpha. These results provide genetic evidence that presynaptic proteins are required in LTP induced through the postsynaptic activation of NMDARs. Thus Rab3A and its effectors are general modules for four distinct types of PKA-dependent LTP in the brain.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Terminales Presinápticos , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Encéfalo/metabolismo , Calcio/metabolismo , AMP Cíclico/metabolismo , Electrodos , Activación Enzimática , Proteínas de Unión al GTP/metabolismo , Guanosina Trifosfato/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Neurológicos , Unión Proteica , Receptores de N-Metil-D-Aspartato/genética , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo , Factores de Tiempo , Proteína de Unión al GTP rab3A/metabolismo
13.
Proc Natl Acad Sci U S A ; 101(3): 859-64, 2004 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-14711997

RESUMEN

The late, transcription- and translation-dependent phase of long-term synaptic potentiation (L-LTP) at the Schaffer collateral synapse of the hippocampus is an experimental model of the synaptic plasticity underlying long-lasting memory formation. L-LTP is typically induced by homosynaptic tetanic stimulation; but associative forms of learning are likely to require the heterosynaptic pairing of stimuli. Here we describe L-LTP elicited by such heterosynaptic pairing at the Schaffer collateral synapse in mice. We find that repeated stimulation of one pathway at low frequency (0.2 Hz), which does not by itself induce synaptic potentiation, will produce long-lasting synaptic plasticity when paired with a brief conditioning burst applied to an independent afferent pathway. The induction of heterosynaptic L-LTP is associative and critically depends on the precise time interval of pairing: simultaneous, conjunctional pairing induces L-LTP; in contrast, delayed pairing induces short-lasting early-phase LTP. Heterosynaptically induced early-phase LTP could be depotentiated by repeatedly presenting unpaired test stimuli, whereas L-LTP could not. This heterosynaptically induced L-LTP requires PKA and protein synthesis. In addition, heterosynaptically induced L-LTP is impaired in transgenic mice that express KCREB (a dominant negative inhibitor of adenosine 3'5'-cyclic monophosphate response element-binding protein-mediated transcription) in the hippocampus. These mice have previously been shown to be impaired in spatial memory but have normal L-LTP as induced by a conventional homosynaptic tetanic protocol. These data suggest that at least in some instances this L-LTP-inducing protocol may better model behaviorally relevant information storage and the in vivo mechanisms underlying long-lasting memories.


Asunto(s)
Hipocampo/fisiología , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Estimulación Eléctrica , Regulación de la Expresión Génica , Técnicas In Vitro , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/biosíntesis , Plasticidad Neuronal/genética , Receptores de N-Metil-D-Aspartato/metabolismo
14.
Proc Natl Acad Sci U S A ; 101(9): 3236-41, 2004 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-14981263

RESUMEN

To address the role of D1 receptors in the medial prefrontal cortex, we combined pharmacological and genetic manipulations to examine long-term synaptic potentiation (LTP)/long-term synaptic depression (LTD) in brain slices of rats and mice. We found that the D1 antagonist SCH23390 selectively blocked the maintenance but not the induction of LTP in the prefrontal cortex. Conversely, activation of D1 receptors facilitated the maintenance of LTP, and this effect is impaired in heterozygous D1 receptor knockout mice. Low-frequency stimulation induced a transient depression in the medial prefrontal cortex. This depression could be transformed into LTD by coapplication of dopamine. Coapplication of dopamine, however, shows no facilitating effect on LTD in heterozygous D1 receptor knockout mice. These results provide pharmacological and genetic evidence for a role of D1 receptors in the bidirectional modulation of synaptic plasticity in the medial prefrontal cortex. The absence of this modulation in heterozygous knockout mice shows that a dysregulation of dopamine receptor expression levels can have dramatic effects on synaptic plasticity in the prefrontal cortex.


Asunto(s)
Depresión Sináptica a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Corteza Prefrontal/fisiología , Receptores de Dopamina D1/fisiología , Sinapsis/fisiología , Animales , Benzazepinas/farmacología , Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Técnicas In Vitro , Cinética , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA