Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 314, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849885

RESUMEN

BACKGROUND: Abnormally expressed BCR/ABL protein serves as the basis for the development of chronic myeloid leukaemia (CML). The F-actin binding domain (FABD), which is a crucial region of the BCR/ABL fusion protein, is also located at the carboxyl end of the c-ABL protein and regulates the kinase activity of c-ABL. However, the precise function of this domain in BCR/ABL remains uncertain. METHODS: The FABD-deficient adenovirus vectors Ad-BCR/ABL△FABD, wild-type Ad-BCR/ABL and the control vector Adtrack were constructed, and 32D cells were infected with these adenoviruses separately. The effects of FABD deletion on the proliferation and apoptosis of 32D cells were evaluated by a CCK-8 assay, colony formation assay, flow cytometry and DAPI staining. The levels of phosphorylated BCR/ABL, p73, and their downstream signalling molecules were detected by western blot. The intracellular localization and interaction of BCR/ABL with the cytoskeleton-related protein F-actin were identified by immunofluorescence and co-IP. The effect of FABD deletion on BCR/ABL carcinogenesis in vivo was explored in CML-like mouse models. The degree of leukaemic cell infiltration was observed by Wright‒Giemsa staining and haematoxylin and eosin (HE) staining. RESULTS: We report that the loss of FABD weakened the proliferation-promoting ability of BCR/ABL, accompanied by the downregulation of BCR/ABL downstream signals. Moreover, the deletion of FABD resulted in a change in the localization of BCR/ABL from the cytoplasm to the nucleus, accompanied by an increase in cell apoptosis due to the upregulation of p73 and its downstream proapoptotic factors. Furthermore, we discovered that the absence of FABD alleviated leukaemic cell infiltration induced by BCR/ABL in mice. CONCLUSIONS: These findings reveal that the deletion of FABD diminished the carcinogenic potential of BCR/ABL both in vitro and in vivo. This study provides further insight into the function of the FABD domain in BCR/ABL.


Asunto(s)
Apoptosis , Proliferación Celular , Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Animales , Humanos , Ratones , Apoptosis/genética , Actinas/metabolismo , Carcinogénesis/genética , Dominios Proteicos , Línea Celular Tumoral
2.
Cell Commun Signal ; 21(1): 27, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36721266

RESUMEN

BACKGROUND: The Philadelphia chromosome encodes the BCR-ABL fusion protein, which has two primary subtypes, P210 and P190. P210 and P190 cause Philadelphia-positive chronic myeloid leukemia (Ph+ CML) and Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL), respectively. The Ph+ ALL is more malignant than Ph+ CML in disease phenotype and progression. This implies the key pathogenic molecules and regulatory mechanisms caused by BCR-ABL in two types of leukemia are different. It is reported that STAT6 was significantly activated only in P190 transformed cells. However, the potential role and the mechanism of STAT6 activation in Ph+ ALL and its activation mechanism by P190 are still unknown. METHODS: The protein and mRNA levels of STAT6, c-Myc, and other molecules were measured by western blot and quantitative real-time PCR. The STAT6 inhibitor AS1517499 was used to specifically inhibit p-STAT6. The effect of p-STAT6 inhibition on Ph+ CML and Ph+ ALL cells was identified by CCK-8 and FCM assay. Dual luciferase reporter and ChIP assay were performed to confirm the direct binding between STAT6 and c-Myc. The impact of STAT6 inhibition on tumor progression was detected in Ph+ CML and Ph+ ALL mouse models. RESULTS: Our results demonstrated that P210 induced CML-like disease, and P190 caused the more malignant ALL-like disease in mouse models. STAT6 was activated in P190 cell lines but not in P210 cell lines. Inhibition of STAT6 suppressed the malignancy of Ph+ ALL in vitro and in vivo, whereas it had little effect on Ph+ CML. We confirmed that p-STAT6 regulated the transcription of c-Myc, and STAT6 was phosphorylated by p-Jak2 in P190 cell lines, which accounted for the discrepant expression of p-STAT6 in P190 and P210 cell lines. STAT6 inhibition synergized with imatinib in Ph+ ALL cells. CONCLUSIONS: Our study suggests that STAT6 activation plays an essential role in the development of Ph+ ALL and may be a potential therapeutic target in Ph+ ALL. Video abstract.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Ratones , Virulencia , Bioensayo , Línea Celular , Factor de Transcripción STAT6
3.
Cell Commun Signal ; 19(1): 71, 2021 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-34217296

RESUMEN

BACKGROUND: The fusion oncoprotein Bcr-Abl is mostly located in the cytoplasm, which causes chronic myeloid leukemia (CML). After moving into the nucleus, the fusion protein can induce apoptosis of CML cells. The coiled-coil domain (CC domain) of Bcr-Abl protein plays a central role in the subcellular localization. However, how CC domain affects subcellular localization of Bcr-Abl remains unclear. METHODS: Herein, the key proteins interacting with the Bcr-Abl CC domain were screened by immunoprecipitation binding mass spectrometry. The specific site of Bcr-Abl CC domain binding to target protein was predicted by Deep Viewer. Immunoprecipitation assay was used to confirmed the specific sites of protein binding. IF and western blot were used to observe the subcellular localization of target protein. Western blot was used to examine the protein changes. CCK-8, clonal formation test and FCM cycle detection were used to observe the effect of inhibitor on the proliferation ability of CML cells. FCM apoptosis detection was used to observe the level of cells apoptosis. RESULTS: HSP90AB1 interacts with Bcr-Abl CC domain via N-terminal domain (NTD), preventing the transport of Bcr-Abl protein to the nucleus and maintaining the activation of Bcr-Abl tyrosine kinase. The nucleus-entrapped Bcr-Abl markedly inhibits the proliferation and induces apoptosis of CML cells by activating p73 and repressing the expression of cytoplasmic oncogenic signaling pathways mediated by Bcr-Abl. Moreover, the combination of 17AAG (Tanespimycin) with Leptomycin B (LMB) considerably decreased the proliferation of CML cells. CONCLUSION: Our study provides evidence that it is feasible to transport Bcr-Abl into the nucleus as an alternative strategy for the treatment of CML, and targeting the NTD of HSP90AB1 to inhibit the interaction with Bcr-Abl is more accurate for the development and application of HSP90 inhibitor in the treatment of CML and other Bcr-Abl-addicted malignancies. Video abstract.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Proteínas de Fusión bcr-abl/genética , Proteínas HSP90 de Choque Térmico/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Apoptosis/genética , Benzoquinonas/farmacología , Citoplasma/efectos de los fármacos , Ácidos Grasos Insaturados/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células K562 , Lactamas Macrocíclicas/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Fosforilación/genética , Unión Proteica/efectos de los fármacos , Dominios Proteicos/genética , Transducción de Señal/efectos de los fármacos
4.
Mikrochim Acta ; 185(8): 401, 2018 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-30078092

RESUMEN

A colorimetric assay is described for the detection of BCR/ABL fusion genes. Polyamidoamine (PAMAM) dendrimers were placed on peroxidase (POx) mimicking Au@Pt nanoparticles to form a nanocomposite of type Au@Pt-PAMAM. Capture DNA probe is a designed nucleic acid strand that specifically binds target DNA to the surface of the electrode. The capture probe was attached to magnetic beads via biotin and avidin interaction. The hairpin structure of the capture probe can only be opened by the complementary BCR/ABL DNA. This results in a highly specific assay. The POx-mimicking property of the Au@Pt-PAMAM causes the formation of a blue dye by reaction of H2O2 and 3,3,3',3'-tetramethylbenzidine (TMB) which is measured by a microplate reader. Under optimum conditions, the absorbance increases linearly the 1 pM to 100 nM BCR/ABL concentration range, and the detection limit is as low as 190 fM. The method is highly selective and was successfully applied to the determination of fusion genes in spiked real samples. Conceivably, it possesses a large potential in clinical testing of patients suffering from chronic myeloid leukemia. Graphical abstract Au@PtNP, an efficient catalyst, is bound with polyamidoamine (PAMAM) dendrimer to amplify the colorimetric signal. With the introduction of streptavidin-magnetic beads to remove non-specific signals, a novel colorimetric sensor is constructed to detect BCR/ABL fusion genes.


Asunto(s)
Materiales Biomiméticos/química , Colorimetría/métodos , Dendrímeros/química , Proteínas de Fusión bcr-abl/genética , Oro/química , Peroxidasa/metabolismo , Platino (Metal)/química , Nanopartículas del Metal/química , Nanocompuestos/química , Reacción en Cadena de la Polimerasa
5.
Biochem Biophys Res Commun ; 485(1): 35-40, 2017 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-28167280

RESUMEN

MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. Here, we identified that miR-599 is up-regulated in non-small cell lung cancer (NSCLC) patients. It promoted NSCLC cell proliferation by negatively regulating SATB2. In NSCLC cell lines, CCK-8 proliferation assay indicated that the cell proliferation is promoted by miR-599 mimics. Transwell assay showed that miR-599 mimics promoted the invasion and migration of NSCLC cells. Luciferase assays confirmed that miR-599 directly binds to the 3'untranslated region of SATB2, and western blotting showed that miR-599 suppresses the expression of SATB2 at the protein level. This study indicates that miR-599 promotes proliferation and invasion of NSCLC cell lines via SATB2. The miR-599 may represent a potential therapeutic target for NSCLC treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Pulmón/patología , Proteínas de Unión a la Región de Fijación a la Matriz/genética , MicroARNs/genética , Factores de Transcripción/genética , Regiones no Traducidas 3' , Anciano , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Pulmón/metabolismo , Neoplasias Pulmonares/patología , Masculino , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Regulación hacia Arriba
6.
Int J Mol Sci ; 18(3)2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28257089

RESUMEN

The gradual emerging of resistance to imatinib urgently calls for the development of new therapy for chronic myeloid leukemia (CML). The fusion protein Bcr-Abl, which promotes the malignant transformation of CML cells, is mainly located in the cytoplasm, while the c-Abl protein which is expressed in the nucleus can induce apoptosis. Based on the hetero-dimerization of FKBP (the 12-kDa FK506- and rapamycin-binding protein) and FRB (the FKBP-rapamycin binding domain of the protein kinase, mTOR) mediated by AP21967, we constructed a nuclear transport system to induce cytoplasmic Bcr-Abl into nuclear. In this study, we reported the construction of the nuclear transport system, and we demonstrated that FN3R (three nuclear localization signals were fused to FRBT2098L with a FLAG tag), HF2S (two FKBP domains were in tandem and fused to the SH2 domain of Grb2 with an HA tag) and Bcr-Abl form a complexus upon AP21967. Bcr-Abl was imported into the nucleus successfully by the nuclear transport system. The nuclear transport system inhibited CML cell proliferation through mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 5 (STAT5) pathways mainly by HF2S. It was proven that nuclear located Bcr-Abl induced CML cell (including imatinib-resistant K562G01 cells) apoptosis by activation of p73 and its downstream molecules. In summary, our study provides a new targeted therapy for the CML patients even with Tyrosine Kinase Inhibitor (TKI)-resistance.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Fusión bcr-abl/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Señales de Localización Nuclear/farmacología , Tirosina/antagonistas & inhibidores , Apoptosis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas de Fusión bcr-abl/química , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Factor de Transcripción STAT5/metabolismo , Sirolimus/análogos & derivados , Sirolimus/farmacología
7.
Tumour Biol ; 2016 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-27817074

RESUMEN

Chronic myeloid leukemia (CML) results from malignant transformation of hematopoietic stem cells induced by the BCR-ABL oncogene. Transformation from chronic to blastic phase is the lethal step in CML. Leukemic stem cells (LSCs) are the basic reason for blastic transformation. It has been shown that Wnt/ß-catenin signaling contributes to the self-renewal capacity and proliferation of LSCs in CML. However, the role of Wnt/ß-catenin signaling in blastic transformation of CML is still obscure. Here, we explored the relationship between BCR-ABL and ß-catenin signaling in vitro and in vivo. We found that BCR-ABL stimulated ß-catenin via activation of PI3K/AKT signaling in blastic phase CML cells. Inhibition of the kinase activity of BCR-ABL, PI3K, or AKT decreased the level of ß-catenin in both K562 cells and a CML mouse model and suppressed the transcription of downstream target genes (c-myc and cyclin D1). In addition, inhibition of the BCR-ABL/PI3K/AKT pathway delayed the disease progression in the CML mouse model. To further explore the role of ß-catenin in the self-renewal and survival of CML LSCs, we established a secondary transplantation CML mouse model. Our data revealed that inhibition of the BCR-ABL/PI3K/AKT pathway reduced the tumor-initiating ability of K562 cells, decreased leukemia cell infiltration into peripheral blood and bone marrow, and prolonged the survival of mice. In conclusion, our data indicate a close relationship between ß-catenin and BCR-ABL/PI3K/AKT in blastic phase CML. ß-Catenin inhibition may be of therapeutic value by targeting LSCs in combination with a tyrosine kinase inhibitor, which may delay blastic transformation of CML.

9.
Exp Cell Res ; 319(8): 1094-101, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23428668

RESUMEN

MicroRNAs (miRNAs) are small RNAs that regulate gene expression posttranscriptionally and are critical for many cellular pathways. Recent evidence has shown that aberrant miRNA expression profiles and unique miRNA signaling pathways are present in many cancers. Here, we demonstrate that miR-29b is markedly lower expressed in CML patient samples. Bioinformatics analysis reveals a conserved target site for miR-29b in the 3'-untranslated region (UTR) of ABL1. miR-29b significantly suppresses the activity of a luciferase reporter containing ABL1-3'UTR and this activity is not observed in cells transfected with mutated ABL1-3'UTR. Enforced expression of miR-29b in K562 cells inhibits cell growth and colony formation ability thereby inducing apoptosis through cleavage of procaspase 3 and PARP. Furthermore, K562 cells transfected with a siRNA targeting ABL1 show similar growth and apoptosis phenotypes as cells overexpression of miR-29b. Collectively, our results suggest that miR-29b may function as a tumor suppressor by targeting ABL1 and BCR/ABL1.


Asunto(s)
Apoptosis/genética , Proliferación Celular , Proteínas de Fusión bcr-abl/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , MicroARNs/fisiología , Apoptosis/efectos de los fármacos , Secuencia de Bases , Proliferación Celular/efectos de los fármacos , Proteínas de Fusión bcr-abl/metabolismo , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Genes Supresores de Tumor/fisiología , Genes abl/fisiología , Células HEK293 , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-bcr/genética , ARN Interferente Pequeño/farmacología
10.
Am J Cancer Res ; 14(6): 2770-2789, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005688

RESUMEN

Chronic myeloid leukemia (CML) is a common hematopoietic malignancy in adults. Great progress has been made in CML therapy with imatinib. However, resistance to imatinib may occur during treatment. BCR::ABL1 dependent imatinib resistance has been well resolved with more potent tyrosine kinase inhibitors, but BCR::ABL1 independent resistance still remains to be resolved. This study is devoted to find novel targets for BCR::ABL1 independent imatinib-resistant patients. It is reported BCR::ABL1 independent resistance is mainly related to the activation of alternative survival pathway, and mTOR is an important regulator for cell growth especially in tumor cells. Hence, we explored the role of mTOR in BCR::ABL1 independent resistance, the possibility of mTOR to be a therapeutic target for imatinib resistant patients and the related mechanism. We found mTOR was upregulated in imatinib-resistant cells. mTOR inhibition by AZD2014 led to growth inhibition and synergized with imatinib in apoptosis induction in K562/G01. AZD2014 exerted its anti-leukemia effect through enhancing autophagy. mTOR signal pathway is poorly inhibited by imatinib and AZD2014 shows little effect on BCR::ABL1 signal pathway, which indicates that mTOR is involved in imatinib resistance via a BCR::ABL1 independent manner. Taken together, mTOR represents a potential target to overcome BCR::ABL1 independent imatinib resistance.

11.
Amino Acids ; 44(2): 461-72, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22782217

RESUMEN

Chronic myeloid leukemia (CML) is a clonal hematologic malignancy characterized by the BCR-ABL protein. BCR-ABL is a constitutively active tyrosine kinase and plays a critical role in the pathogenesis of CML. Imatinib mesylate, a selective tyrosine kinase inhibitor, is effective in CML, but drug resistance and relapse occur. The coiled-coil (CC) domain located in BCR(1-72) mediates BCR-ABL tetramerization, which is essential for the activation of tyrosine kinase and transformation potential of BCR-ABL. CC domain is supposed to be a therapeutic target for CML. We purified a TAT-CC protein competively binding with the endogenous CC domain to reduce BCR-ABL kinase activity. We found that TAT-CC co-located and interacted with BCR-ABL in Ba/F3-p210 and K562 cells. It induced apoptosis and inhibited proliferation in these cells. It increased the sensitivity of these cells to imatinib and reduced the phosphorylation of BCR-ABL, CRKL and STAT5. We confirmed that TAT-CC could attenuate the oncogenicity of Ba/F3-p210 cells and diminish the volume of K562 solid tumor in mice. We conclude targeting the CC may provide a complementary therapy to inhibit BCR-ABL oncogenicity.


Asunto(s)
Proteínas de Fusión bcr-abl/química , Proteínas de Fusión bcr-abl/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/enzimología , Péptidos/metabolismo , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Proteínas de Fusión bcr-abl/genética , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/fisiopatología , Ratones , Péptidos/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
12.
Exp Hematol Oncol ; 11(1): 33, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35624462

RESUMEN

BACKGROUND: With the widespread clinical application of tyrosine kinase inhibitors (TKIs), an increasing number of chronic myeloid leukaemia (CML) patients have developed resistance or intolerance to TKIs. BCR/ABL is the oncoprotein of CML. HSP90 is an essential chaperone of BCR/ABL and plays an important role in protein folding and the function of BCR/ABL. Therefore, inhibiting the chaperone function of HSP90 may be an effective strategy for CML treatment and to overcome TKI resistance. METHODS: The effect of KW-2478 on CML cell viability, apoptosis and cell cycle progression was detected by CCK-8 assay or flow cytometry. The levels of BCR/ABL, HSP90 and other signalling proteins were detected by western blots. The mitochondrial membrane potential was detected by flow cytometry combined with JC-1 staining. The interaction between BCR/ABL and HSP90α was detected by coimmunoprecipitation. The effect of KW-2478 on BCR/ABL carcinogenesis in vivo was investigated in CML-like mouse models. RESULTS: KW-2478 inhibited growth and induced apoptosis of CML cells. KW-2478 inhibited the chaperone function of HSP90α and then weakened the BCR/ABL and MAPK signalling pathways. This treatment also caused an increase in p27 and p21 expression and a decrease in cyclin B1 expression, which led to G2/M phase arrest. The mitochondrial pathway was primarily responsible for KW-2478-induced apoptosis. KW-2478 had a synergistic effect with imatinib in growth inhibition. Notably, KW-2478 had a stronger effect on growth inhibition, apoptosis induction and cell cycle arrest of K562/G01 cells than K562 cells. KW-2478 could effectively prolong the mouse lifespan and alleviate disease symptoms in CML-like mouse models. CONCLUSIONS: This finding demonstrated that KW-2478 had anticancer properties in imatinib-sensitive and imatinib-resistant CML cells and illustrated the possible mechanisms. This study provides an alternative choice for CML treatment, especially for TKI-resistant patients with BCR/ABL amplification and TKI-intolerant patients.

13.
Exp Hematol Oncol ; 11(1): 36, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672796

RESUMEN

BACKGROUND: Tyrosine kinase inhibitors have achieved quite spectacular advances in the treatment of chronic myeloid leukemia (CML), but disease progression and drug resistance that related to the T315I mutation, remain major obstacles. Dendritic cell-derived exosomes (Dex) induce NK cell immunity, but have yet to achieve satisfactory clinical efficacy. An approach to potentiate antitumor immunity by inducing both NK- and T-cell activation is urgently needed. Retinoic acid early inducible-1γ (RAE-1γ), a major ligand of natural killer group 2 member D (NKG2D), plays an important role in NK-cell and T-lymphocyte responses. We generated RAE-1γ enriched CML-specific Dex (CML-RAE-1γ-Dex) from dendritic cells (DCs) pulsed with lysates of RAE-1γ-expressing CML cells or T315I-mutant CML cells, aiming to simultaneously activate NK cells and T lymphocytes. METHODS: We generated novel CML-RAE-1γ-Dex vaccines, which expressed RAE-1γ, and were loaded with CML tumor cell lysates. NK cells or T lymphocytes were coincubated with CML-RAE-1γ-Dex vaccines. Flow cytometry was performed to evaluate the activation and proliferation of these immune cells. Cytokine production and cytotoxicity toward CML cells with or without the T315I mutation were detected by ELISPOT, ELISA and LDH assays. CML models induced by BCR-ABL or BCR-ABLT315I were used to determine the immunological function of Dex in vivo. RESULTS: Herein, CML-RAE-1γ-Dex were prepared. CML-RAE-1γ-Dex effectively enhanced the proliferation and effector functions of NK cells, CD4+ T cells and CD8+ T cells, which in turn produced strong anti-CML efficacy in vitro. Moreover, CML-RAE-1γ-Dex-based immunotherapy inhibited leukemogenesis and generated durable immunological memory in CML mouse models. Similar immune responses were also observed with imatinib-resistant CML cells carrying the T315I mutation. CONCLUSIONS: This approach based on CML-RAE-1γ-Dex vaccines may be a promising strategy for CML treatment, especially for cases with the T315I mutation.

14.
J Hematol Oncol ; 14(1): 139, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488814

RESUMEN

BACKGROUND: The pathogenesis of chronic myeloid leukemia (CML) is the formation of the BCR/ABL protein, which is encoded by the bcr/abl fusion gene, possessing abnormal tyrosine kinase activity. Despite the wide application of tyrosine kinase inhibitors (TKIs) in CML treatment, TKIs drug resistance or intolerance limits their further usage in a subset of patients. Furthermore, TKIs inhibit the tyrosine kinase activity of the BCR/ABL oncoprotein while failing to eliminate the pathologenic oncoprotein. To develop alternative strategies for CML treatment using therapeutic antibodies, and to address the issue that antibodies cannot pass through cell membranes, we have established a novel intracellular delivery of anti-BCR/ABL antibodies, which serves as a prerequisite for CML therapy. METHODS: Anti-BCR/ABL antibodies were encapsulated in poly(D, L-lactide-co-glycolide) nanoparticles (PLGA NPs) by a double emulsion method, and transferrin was labeled on the surface of the nanoparticles (Ab@Tf-Cou6-PLGA NPs). The characteristics of nanoparticles were measured by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Cellular uptake of nanoparticles was measured by flow cytometry (FCM). The effect of nanoparticles on the apoptosis and proliferation of CML cells was testified by FCM and CCK-8 assay. In addition, the anti-cancer impact of nanoparticles was evaluated in mouse models of CML. RESULTS: The results demonstrated that the Ab@Tf-Cou6-PLGA NPs functioned as an intracellular deliverer of antibodies, and exhibited an excellent effect on degrading BCR/ABL oncoprotein in CML cells via the Trim-Away pathway. Treatment with Ab@Tf-Cou6-PLGA NPs inhibited the proliferation and induced the apoptosis of CML cells in vitro as well as impaired the oncogenesis ability of CML cells in vivo. CONCLUSIONS: In conclusion, our study indicated that this approach achieved safe and efficient intracellular delivery of antibodies and degraded BCR/ABL oncoprotein via the Trim-Away pathway, which provides a promising therapeutic strategy for CML patients, particularly those with TKI resistance.


Asunto(s)
Antineoplásicos Inmunológicos/administración & dosificación , Portadores de Fármacos/química , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Animales , Antineoplásicos Inmunológicos/uso terapéutico , Carcinogénesis/patología , Línea Celular Tumoral , Femenino , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Ratones SCID , Nanopartículas/química
15.
Oncol Rep ; 45(2): 557-568, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33416164

RESUMEN

Clinical resistance to ABL tyrosine kinase inhibitor (TKI) imatinib remains a critical issue in the treatment of chronic myeloid leukemia (CML). Transcription factor 7 (TCF7) is one of the main Wnt/ß­catenin signaling mediators. Previous studies have shown that TCF7 is vital for tumor initiation, and targeting TCF7 can reduce drug resistance in many types of cancer. However, the role of TCF7 in CML imatinib­resistant cells is unclear. In the present study, we analyzed the transcriptomic data from CML clinical samples in the Gene Expression Omnibus (GEO) and performed experimental verification in the CML imatinib­resistant cell line K562/G01. We found that the expression of TCF7 was independent of BCR­ABL1 activity. Silencing of TCF7 downregulated the expression levels of CTNNB1, CCND1, and ABCC2, and therefore inhibited proliferation, weakened colony formation, and increased the drug sensitivity of imatinib­resistant cells. After analyzing the transcriptomic data of four groups (Scramble, TCF7_KD, Scramble+imatinib, and TCF7_KD+imatinib) using bioinformatics, we noted that Wnt/ß­catenin and ATP­binding cassette (ABC) transporter signaling pathways were upregulated in imatinib­resistant cells under conventional dose of imatinib, and TCF7 knockdown could neutralize this effect. Next, using ChIP­qPCR, we demonstrated that TCF7 was recruited to the promoter region of ABCC2 and activated gene transcription. In summary, our results highlight that the upregulation of Wnt/ß­catenin and ABC transporter signaling pathways induced by imatinib treatment of resistant cells confers imatinib resistance, and reveal that targeting TCF7 to regulate the Wnt/ß­catenin/TCF7/ABC transporter signaling axis may represent an effective strategy for overcoming imatinib resistance.


Asunto(s)
Resistencia a Antineoplásicos/genética , Mesilato de Imatinib/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Factor 1 de Transcripción de Linfocitos T/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Antineoplásicos , Apoptosis/genética , Proliferación Celular/genética , Regulación Leucémica de la Expresión Génica , Humanos , Mesilato de Imatinib/uso terapéutico , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , RNA-Seq , Factor 1 de Transcripción de Linfocitos T/genética , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
16.
Technol Cancer Res Treat ; 20: 15330338211052150, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34723728

RESUMEN

Background: Resistance to tyrosine kinase inhibitors (TKIs) in patients with chronic myeloid leukemia (CML) remains a problem in clinical treatment, and the mechanism has not been fully clarified. Autophagy can protect cancer cells under chemotherapeutic stimulation. Long noncoding RNAs (lncRNAs) are critical in drug resistance of CML. The role of lncRNAs in autophagy and drug resistance of CML needs to be further explored. Methods: Western blot and immunofluorescence were used to evaluate the autophagy activity in the drug-resistant CML cell line K562/G01 and its parental cell line K562. Then the sensitivity of K562/G01 cells to the first generation TKI imatinib (IM) after autophagy inhibition was determined by CCK-8 assays. The lncRNA OIP5-AS1 related to the drug resistance of CML cells was determined by Gene Expression Omnibus database analysis. Western blot and drug-sensitivity assays were used to detect changes in autophagy and sensitivity to the IM in resistant CML cells after OIP5-AS1 knockdown. The interactions of OIP5-AS1, miR-30e-5p, and ATG12 were explored by RNA immunoprecipitation and dual-luciferase reporter assays. Results: In this study, we found that autophagy was associated with drug resistance in CML cells. Moreover, the upregulation of OIP5-AS1 in K562/G01 cells was related to the enhancement of autophagy. Knockdown of OIP5-AS1 suppressed autophagy and enhanced the sensitivity of K562/G01 cells to IM. Furthermore, OIP5-AS1 regulated ATG12 by competitively binding miR-30e-5p, thereby affecting autophagy-related drug resistance. Conclusion: Our study reveals that OIP5-AS1 promotes the autophagy-related IM resistance in CML cells by regulating miR-30e-5p/ATG12 axis, providing new insights into the drug resistance mechanism of CML.


Asunto(s)
Proteína 12 Relacionada con la Autofagia/genética , Autofagia/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , ARN Largo no Codificante/genética , Regiones no Traducidas 3' , Línea Celular Tumoral , Bases de Datos Genéticas , Técnicas de Silenciamiento del Gen , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/diagnóstico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , MicroARNs/genética , Interferencia de ARN , Transcriptoma
17.
Bioengineered ; 12(1): 4816-4827, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34346842

RESUMEN

The BCR-ABL fusion gene plays a crucial role in the leukemogenesis of chronic myeloid leukemia (CML). The BCR-ABL oncoprotein encoded by this fusion gene has been extensively studied. However, research on whether BCR-ABL also affects circular RNAs (circRNAs) is limited. This study aimed to explore the new fusion circRNAs produced by BCR-ABL and their role in CML cells. In this study, we identified a novel fusion circRNA, named F-circBA1, originating from BCR-ABL in K562 and K562/G01 cells using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and Sanger sequencing. qRT-PCR of the nuclear RNA and cytoplasmic RNA were separated, indicating that F-circBA1 was mainly localized in the cytoplasm. Cell counting kit-8 assay and flow cytometry showed that F-circBA1 knockdown by shRNA prevented the proliferation of K562 and K562/G01 cells, and the cell cycle was arrested at G2/M. Mechanically, dual-luciferase reporter assay and western blotting assay showed that F-circBA1 sponged miR-148-3p and F-circBA1 silencing decreased CDC25B expression in vitro. Furthermore, the results of the murine leukemogenesis model showed that F-circBA1 knockdown suppressed leukemogenesis in vivo. Besides, we found the existence of F-circBA1 in some patients with BCR-ABL-positive CML. In conclusion, these results demonstrate the presence of F-circBA1 and its oncogenic role in CML cells.


Asunto(s)
Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , ARN Circular , Animales , Apoptosis/genética , Proliferación Celular/genética , Femenino , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Células HEK293 , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Ratones , ARN Circular/genética , ARN Circular/metabolismo
18.
Hematology ; 26(1): 543-551, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34348586

RESUMEN

Objectives: Chronic myeloid leukemia (CML) is a malignant tumor of the blood system. Gö6976, as a type of indolocarbazole and shows strong antitumor effects, but there have been no reports on the effect of Gö6976 on CML. The objectives of this research were: (1) to explore the impact of Gö6976 on CML in vitro and in vivo; and (2) to explore the drug toxicity of Gö6976 to normal cells and animals.Methods:K562 cells and CML mice were used to explore the effect of Gö6976 on CML. Peripheral blood mononuclear cells (PBMCs), CD34+ cells, and healthy mice were used to explore the drug toxicity of Gö6976.Results: Cell experiments showed that Gö6976 could inhibit the proliferation of K562 cells and enhance the inhibitory effects of imatinib at 5 µM and 10 µM, but it had little effect on CD34+ cells or PBMCs at concentrations less than 5 µM. Animal experiments showed that 2.5 mg/kg Gö6976 could effectively inhibit the development of CML in mice, and it had almost no effects on healthy mice at 2.5 mg/kg and 10 mg/kg.Discussion: Because of the direct inhibitory effect of Gö6976 on CML and its pharmacological enhancement effect on imatinib, it is foreseeable that Gö6976 could become a new type of anti-CML medicine. And the further research is needed.Conclusion: Our findings verified that Gö6976 could effectively inhibit CML in vitro and in vivo, and it is almost nontoxic to hematopoietic cells, immune cells, and healthy mice.


Asunto(s)
Carbazoles/farmacología , Proliferación Celular/efectos de los fármacos , Mesilato de Imatinib/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Animales , Carbazoles/agonistas , Agonismo de Drogas , Humanos , Mesilato de Imatinib/agonistas , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones SCID , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Front Oncol ; 11: 698410, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504783

RESUMEN

Abnormal subcellular localization of proteins is an important cause of tumorigenesis and drug resistance. Chromosome region maintenance 1 (CRM1), the nuclear export regulator of most proteins, has been confirmed to be over-expressed in various malignancies and is regarded as an efficient target. But the potential role of the CRM1 cofactor RanBP3 (Ran Binding Protein 3) is left unrevealed in chronic myeloid leukemia (CML). Here, we first detected the level of RanBP3 in CML and found an elevated RanBP3 expression in CML compared with control. Then we used shRNA lentivirus to down-regulated RanBP3 in imatinib sensitive K562 cells and resistant K562/G01 cells and found RanBP3 silencing inhibited cell proliferation by up-regulating p21, induced caspase3-related cell apoptosis, and enhanced the drug sensitivity of IM in vitro. Notably, we observed that RanBP3 silencing restored imatinib sensitivity of K562 cells in NOD/SCID mice. Mechanistically, the nuclear aggregation of SMAD2/3 revealed that tumor suppressor axis (TGF-ß)-SMAD2/3-p21 was the anti-proliferation program related to RanBP3 knockdown, and the decrease of cytoplasmic ERK1/2 caused by RanBP3 interference leaded to the down-regulation of anti-apoptosis protein p(Ser112)-BAD, which was the mechanism of increased cell apoptosis and enhanced chemosensitivity to imatinib in CML. In summary, this study revealed the expression and potential role of RanBP3 in CML, suggesting that targeting RanBP3 alone or combined with TKIs could improve the clinical response of CML.

20.
Brain Res ; 1740: 146848, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32330520

RESUMEN

The phonemic merger is a unique phenomenon which is referred to as acoustically very different phonemes are recognized as the same phoneme. In our previous study, we demonstrated that the merged speakers had lost the ability to discriminate the merged phonemes pre-attentively, as revealed by their failure in mismatch negativity (MMN) elicitation in the oddball stream of the merged phonemes /n/-/l/. In this study, we investigated the recovery of the discrimination ability via phonemic training and found that the merged speakers regained the ability of discriminating merged phonemes pre-attentively, after a 7-day /n/-/l/ phonemic training, as revealed by the reactivation of MMN brain response to the /n/-/l/ phoneme categories. Our finding indicates that separate memory traces of merged phonemes could be rebuilt during the training process.


Asunto(s)
Estimulación Acústica/métodos , Discriminación en Psicología/fisiología , Memoria/fisiología , Fonética , Percepción del Habla/fisiología , Adolescente , Corteza Cerebral/fisiología , Electroencefalografía/métodos , Potenciales Evocados Auditivos/fisiología , Femenino , Humanos , Masculino , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA