Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(5): 104651, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36972790

RESUMEN

Lysine methylation is a dynamic, posttranslational mark that regulates the function of histone and nonhistone proteins. Many of the enzymes that mediate lysine methylation, known as lysine methyltransferases (KMTs), were originally identified to modify histone proteins but have also been discovered to methylate nonhistone proteins. In this work, we investigate the substrate selectivity of the KMT PRDM9 to identify both potential histone and nonhistone substrates. Though normally expressed in germ cells, PRDM9 is significantly upregulated across many cancer types. The methyltransferase activity of PRDM9 is essential for double-strand break formation during meiotic recombination. PRDM9 has been reported to methylate histone H3 at lysine residues 4 and 36; however, PRDM9 KMT activity had not previously been evaluated on nonhistone proteins. Using lysine-oriented peptide libraries to screen potential substrates of PRDM9, we determined that PRDM9 preferentially methylates peptide sequences not found in any histone protein. We confirmed PRDM9 selectivity through in vitro KMT reactions using peptides with substitutions at critical positions. A multisite λ-dynamics computational analysis provided a structural rationale for the observed PRDM9 selectivity. The substrate selectivity profile was then used to identify putative nonhistone substrates, which were tested by peptide spot array, and a subset was further validated at the protein level by in vitro KMT assays on recombinant proteins. Finally, one of the nonhistone substrates, CTNNBL1, was found to be methylated by PRDM9 in cells.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Lisina , Metilación , Procesamiento Proteico-Postraduccional , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Especificidad por Sustrato , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(38): 18937-18942, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31455737

RESUMEN

Calcium/calmodulin-dependent kinase II (CaMKII) plays a key role in the plasticity of dendritic spines. Calcium signals cause calcium-calmodulin to activate CaMKII, which leads to remodeling of the actin filament (F-actin) network in the spine. We elucidate the mechanism of the remodeling by combining computer simulations with protein array experiments and electron microscopic imaging, to arrive at a structural model for the dodecameric complex of CaMKII with F-actin. The binding interface involves multiple domains of CaMKII. This structure explains the architecture of the micrometer-scale CaMKII/F-actin bundles arising from the multivalence of CaMKII. We also show that the regulatory domain of CaMKII may bind either calmodulin or F-actin, but not both. This frustration, along with the multipartite nature of the binding interface, allows calmodulin transiently to strip CaMKII from actin assemblies so that they can reorganize. This observation therefore provides a simple mechanism by which the structural dynamics of CaMKII establishes the link between calcium signaling and the morphological plasticity of dendritic spines.


Asunto(s)
Actinas/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calmodulina/metabolismo , Espinas Dendríticas/metabolismo , Citoesqueleto de Actina , Actinas/química , Calcio/química , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Calmodulina/química , Simulación por Computador , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Multimerización de Proteína
3.
J Biol Chem ; 295(33): 11845-11865, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32611770

RESUMEN

Nav1.6 is the primary voltage-gated sodium channel isoform expressed in mature axon initial segments and nodes, making it critical for initiation and propagation of neuronal impulses. Thus, Nav1.6 modulation and dysfunction may have profound effects on input-output properties of neurons in normal and pathological conditions. Phosphorylation is a powerful and reversible mechanism regulating ion channel function. Because Nav1.6 and the multifunctional Ca2+/CaM-dependent protein kinase II (CaMKII) are independently linked to excitability disorders, we sought to investigate modulation of Nav1.6 function by CaMKII signaling. We show that inhibition of CaMKII, a Ser/Thr protein kinase associated with excitability, synaptic plasticity, and excitability disorders, with the CaMKII-specific peptide inhibitor CN21 reduces transient and persistent currents in Nav1.6-expressing Purkinje neurons by 87%. Using whole-cell voltage clamp of Nav1.6, we show that CaMKII inhibition in ND7/23 and HEK293 cells significantly reduces transient and persistent currents by 72% and produces a 5.8-mV depolarizing shift in the voltage dependence of activation. Immobilized peptide arrays and nanoflow LC-electrospray ionization/MS of Nav1.6 reveal potential sites of CaMKII phosphorylation, specifically Ser-561 and Ser-641/Thr-642 within the first intracellular loop of the channel. Using site-directed mutagenesis to test multiple potential sites of phosphorylation, we show that Ala substitutions of Ser-561 and Ser-641/Thr-642 recapitulate the depolarizing shift in activation and reduction in current density. Computational simulations to model effects of CaMKII inhibition on Nav1.6 function demonstrate dramatic reductions in spontaneous and evoked action potentials in a Purkinje cell model, suggesting that CaMKII modulation of Nav1.6 may be a powerful mechanism to regulate neuronal excitability.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Neuronas/metabolismo , Animales , Línea Celular , Células Cultivadas , Femenino , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Plasticidad Neuronal , Técnicas de Placa-Clamp , Células de Purkinje/metabolismo
4.
J Neurochem ; 140(3): 421-434, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27889915

RESUMEN

Glutamate clearance by astrocytes is an essential part of normal excitatory neurotransmission. Failure to adapt or maintain low levels of glutamate in the central nervous system is associated with multiple acute and chronic neurodegenerative diseases. The primary excitatory amino acid transporters in human astrocytes are EAAT1 and EAAT2 (GLAST and GLT-1, respectively, in rodents). While the inhibition of calcium/calmodulin-dependent kinase (CaMKII), a ubiquitously expressed serine/threonine protein kinase, results in diminished glutamate uptake in cultured primary rodent astrocytes (Ashpole et al. 2013), the molecular mechanism underlying this regulation is unknown. Here, we use a heterologous expression model to explore CaMKII regulation of EAAT1 and EAAT2. In transiently transfected HEK293T cells, pharmacological inhibition of CaMKII (using KN-93 or tat-CN21) reduces [3 H]-glutamate uptake in EAAT1 without altering EAAT2-mediated glutamate uptake. While over-expressing the Thr287Asp mutant to enhance autonomous CaMKII activity had no effect on either EAAT1 or EAAT2-mediated glutamate uptake, over-expressing a dominant-negative version of CaMKII (Asp136Asn) diminished EAAT1 glutamate uptake. SPOTS peptide arrays and recombinant glutathione S-transferase-fusion proteins of the intracellular N- and C-termini of EAAT1 identified two potential phosphorylation sites at residues Thr26 and Thr37 in the N-terminus. Introducing an Ala (a non-phospho mimetic) at Thr37 diminished EAAT1-mediated glutamate uptake, suggesting that the phosphorylation state of this residue is important for constitutive EAAT1 function. Our study is the first to identify a glutamate transporter as a direct CaMKII substrate and suggests that CaMKII signaling is a critical driver of constitutive glutamate uptake by EAAT1.


Asunto(s)
Ácido Aspártico/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Transportador 1 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Secuencia de Aminoácidos , Animales , Bencilaminas/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Células Cultivadas , Transportador 1 de Aminoácidos Excitadores/genética , Femenino , Células HEK293 , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Sulfonamidas/farmacología
5.
PLoS Pathog ; 11(11): e1005268, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26544049

RESUMEN

Members of the family of calcium dependent protein kinases (CDPK's) are abundant in certain pathogenic parasites and absent in mammalian cells making them strong drug target candidates. In the obligate intracellular parasite Toxoplasma gondii TgCDPK3 is important for calcium dependent egress from the host cell. Nonetheless, the specific substrate through which TgCDPK3 exerts its function during egress remains unknown. To close this knowledge gap we applied the proximity-based protein interaction trap BioID and identified 13 proteins that are either near neighbors or direct interactors of TgCDPK3. Among these was Myosin A (TgMyoA), the unconventional motor protein greatly responsible for driving the gliding motility of this parasite, and whose phosphorylation at serine 21 by an unknown kinase was previously shown to be important for motility and egress. Through a non-biased peptide array approach we determined that TgCDPK3 can specifically phosphorylate serines 21 and 743 of TgMyoA in vitro. Complementation of the TgmyoA null mutant, which exhibits a delay in egress, with TgMyoA in which either S21 or S743 is mutated to alanine failed to rescue the egress defect. Similarly, phosphomimetic mutations in the motor protein overcome the need for TgCDPK3. Moreover, extracellular Tgcdpk3 mutant parasites have motility defects that are complemented by expression of S21+S743 phosphomimetic of TgMyoA. Thus, our studies establish that phosphorylation of TgMyoA by TgCDPK3 is responsible for initiation of motility and parasite egress from the host-cell and provides mechanistic insight into how this unique kinase regulates the lytic cycle of Toxoplasma gondii.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Miosinas/metabolismo , Proteínas Quinasas/metabolismo , Toxoplasma/enzimología , Fosforilación
6.
Bioorg Med Chem ; 25(12): 2995-3005, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28438385

RESUMEN

Triple-negative breast cancers (TNBCs) lack the signature targets of other breast tumors, such as HER2, estrogen receptor, and progesterone receptor. These aggressive basal-like tumors are driven by a complex array of signaling pathways that are activated by multiple driver mutations. Here we report the discovery of 6 (KIN-281), a small molecule that inhibits multiple kinases including maternal leucine zipper kinase (MELK) and the non-receptor tyrosine kinase bone marrow X-linked (BMX) with single-digit micromolar IC50s. Several derivatives of 6 were synthesized to gain insight into the binding mode of the compound to the ATP binding pocket. Compound 6 was tested for its effect on anchorage-dependent and independent growth of MDA-MB-231 and MDA-MB-468 breast cancer cells. The effect of 6 on BMX prompted us to evaluate its effect on STAT3 phosphorylation and DNA binding. The compound's inhibition of cell growth led to measurements of survivin, Bcl-XL, p21WAF1/CIP1, and cyclin A2 levels. Finally, LC3B-II levels were quantified following treatment of cells with 6 to determine whether the compound affected autophagy, a process that is known to be activated by STAT3. Compound 6 provides a starting point for the development of small molecules with polypharmacology that can suppress TNBC growth and metastasis.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Autofagia/efectos de los fármacos , Mama/efectos de los fármacos , Mama/metabolismo , Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Simulación del Acoplamiento Molecular , Factor de Transcripción STAT3/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Proteína p53 Supresora de Tumor/metabolismo
7.
J Neurosci ; 35(42): 14086-102, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26490852

RESUMEN

The sensation of touch is initiated when fast conducting low-threshold mechanoreceptors (Aß-LTMRs) generate impulses at their terminals in the skin. Plasticity in this system is evident in the process of adaption, in which a period of diminished sensitivity follows prior stimulation. CaMKII is an ideal candidate for mediating activity-dependent plasticity in touch because it shifts into an enhanced activation state after neuronal depolarizations and can thereby reflect past firing history. Here we show that sensory neuron CaMKII autophosphorylation encodes the level of Aß-LTMR activity in rat models of sensory deprivation (whisker clipping, tail suspension, casting). Blockade of CaMKII signaling limits normal adaptation of action potential generation in Aß-LTMRs in excised skin. CaMKII activity is also required for natural filtering of impulse trains as they travel through the sensory neuron T-junction in the DRG. Blockade of CaMKII selectively in presynaptic Aß-LTMRs removes dorsal horn inhibition that otherwise prevents Aß-LTMR input from activating nociceptive lamina I neurons. Together, these consequences of reduced CaMKII function in Aß-LTMRs cause low-intensity mechanical stimulation to produce pain behavior. We conclude that, without normal sensory activity to maintain adequate levels of CaMKII function, the touch pathway shifts into a pain system. In the clinical setting, sensory disuse may be a critical factor that enhances and prolongs chronic pain initiated by other conditions. SIGNIFICANCE STATEMENT: The sensation of touch is served by specialized sensory neurons termed low-threshold mechanoreceptors (LTMRs). We examined the role of CaMKII in regulating the function of these neurons. Loss of CaMKII function, such as occurred in rats during sensory deprivation, elevated the generation and propagation of impulses by LTMRs, and altered the spinal cord circuitry in such a way that low-threshold mechanical stimuli produced pain behavior. Because limbs are protected from use during a painful condition, this sensitization of LTMRs may perpetuate pain and prevent functional rehabilitation.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Mecanorreceptores/fisiología , Nociceptores/fisiología , Umbral del Dolor/fisiología , Dolor/fisiopatología , Tacto/genética , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Dependovirus/genética , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Ganglios Espinales/citología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hiperalgesia/fisiopatología , Masculino , Mecanorreceptores/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Actividad Motora/genética , Proteínas del Tejido Nervioso/metabolismo , Dolor/etiología , Enfermedades del Sistema Nervioso Periférico/complicaciones , Ratas , Ratas Sprague-Dawley , Privación Sensorial/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Piel/inervación
8.
J Neuroinflammation ; 13(1): 181, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27400965

RESUMEN

BACKGROUND: Acute exposure to prostaglandin E2 (PGE2) activates EP receptors in sensory neurons which triggers the cAMP-dependent protein kinase A (PKA) signaling cascade resulting in enhanced excitability of the neurons. With long-term exposure to PGE2, however, the activation of PKA does not appear to mediate persistent PGE2-induced sensitization. Consequently, we examined whether homologous desensitization of PGE2-mediated PKA activation occurs after long-term exposure of isolated sensory neurons to the eicosanoid. METHODS: Sensory neuronal cultures were harvested from the dorsal root ganglia of adult male Sprague-Dawley rats. The cultures were pretreated with vehicle or PGE2 and used to examine signaling mechanisms mediating acute versus persistent sensitization by exposure to the eicosanoid using enhanced capsaicin-evoked release of immunoreactive calcitonin gene-related peptide (iCGRP) as an endpoint. Neuronal cultures chronically exposed to vehicle or PGE2 also were used to study the ability of the eicosanoid and other agonists to activate PKA and whether long-term exposure to the prostanoid alters expression of EP receptor subtypes. RESULTS: Acute exposure to 1 µM PGE2 augments the capsaicin-evoked release of iCGRP, and this effect is blocked by the PKA inhibitor H-89. After 5 days of exposure to 1 µM PGE2, administration of the eicosanoid still augments evoked release of iCGRP, but the effect is not attenuated by inhibition of PKA or by inhibition of PI3 kinases. The sensitizing actions of PGE2 after acute and long-term exposure were attenuated by EP2, EP3, and EP4 receptor antagonists, but not by an EP1 antagonist. Exposing neuronal cultures to 1 µM PGE2 for 12 h to 5 days blocks the ability of PGE2 to activate PKA. The offset of the desensitization occurs within 24 h of removal of PGE2 from the cultures. Long-term exposure to PGE2 also results in desensitization of the ability of a selective EP4 receptor agonist, L902688 to activate PKA, but does not alter the ability of cholera toxin, forskolin, or a stable analog of prostacyclin to activate PKA. CONCLUSIONS: Long-term exposure to PGE2 results in homologous desensitization of EP4 receptor activation of PKA, but not to neuronal sensitization suggesting that activation of PKA does not mediate PGE2-induced sensitization after chronic exposure to the eicosanoid.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dinoprostona/farmacología , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Adyuvantes Inmunológicos/farmacología , Animales , Capsaicina/farmacología , Células Cultivadas , Cromonas/farmacología , Colforsina/farmacología , Eicosanoides/farmacología , Inhibidores Enzimáticos/farmacología , Ganglios Espinales/citología , Isoquinolinas/farmacología , Masculino , Morfolinas/farmacología , Ratas , Ratas Sprague-Dawley , Fármacos del Sistema Sensorial/farmacología , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Factores de Tiempo
9.
Proc Natl Acad Sci U S A ; 110(43): 17368-73, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24101513

RESUMEN

Large tumor suppressor (LATS)1/2 protein kinases transmit Hippo signaling in response to intercellular contacts and serum levels to limit cell growth via the inhibition of Yes-associated protein (YAP). Here low serum and high LATS1 activity are found to enhance the levels of the 130-kDa isoform of angiomotin (Amot130) through phosphorylation by LATS1/2 at serine 175, which then forms a binding site for 14-3-3. Such phosphorylation, in turn, enables the ubiquitin ligase atrophin-1 interacting protein (AIP)4 to bind, ubiquitinate, and stabilize Amot130. Consistently, the Amot130 (S175A) mutant, which lacks LATS phosphorylation, bound AIP4 poorly under all conditions and showed reduced stability. Amot130 and AIP4 also promoted the ubiquitination and degradation of YAP in response to serum starvation, unlike Amot130 (S175A). Moreover, silencing Amot130 expression blocked LATS1 from inhibiting the expression of connective tissue growth factor, a YAP-regulated gene. Concordant with phosphorylated Amot130 specifically mediating these effects, wild-type Amot130 selectively induced YAP phosphorylation and reduced transcription of connective tissue growth factor in an AIP4-dependent manner versus Amot130 (S175A). Further, Amot130 but not Amot130 (S175A) strongly inhibited the growth of MDA-MB-468 breast cancer cells. The dominant-negative effects of Amot130 (S175A) on YAP signaling also support that phosphorylated Amot130 transduces Hippo signaling. Likewise, Amot130 expression provoked premature growth arrest during mammary cell acini formation, whereas Amot130 (S175A)-expressing cells formed enlarged and poorly differentiated acini. Taken together, the phosphorylation of Amot130 by LATS is found to be a key feature that enables it to inhibit YAP-dependent signaling and cell growth.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proliferación Celular/efectos de los fármacos , Medio de Cultivo Libre de Suero/farmacología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Angiomotinas , Animales , Sitios de Unión/genética , Western Blotting , Línea Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Células MCF-7 , Proteínas de la Membrana/genética , Proteínas de Microfilamentos , Microscopía Confocal , Mutación , Fosfoproteínas/genética , Fosforilación/efectos de los fármacos , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina/genética , Serina/metabolismo , Factores de Transcripción , Transcripción Genética/efectos de los fármacos , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Señalizadoras YAP
11.
Biochem J ; 464(2): 251-8, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25190515

RESUMEN

Biphasic glucose-stimulated insulin secretion (GSIS) from pancreatic ß-cells involves soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor (SNARE) protein-regulated exocytosis. SNARE complex assembly further requires the regulatory proteins Munc18c, Munc18-1 and Doc2b. Munc18-1 and Munc18c are required for first- and second-phase GSIS respectively. These distinct Munc18-1 and Munc18c roles are related to their transient high-affinity binding with their cognate target (t-)SNAREs, Syntaxin 1A and Syntaxin 4 respectively. Doc2b is essential for both phases of GSIS, yet the molecular basis for this remains unresolved. Because Doc2b binds to Munc18-1 and Munc18c via its distinct C2A and C2B domains respectively, we hypothesized that Doc2b may provide a plasma membrane-localized scaffold/platform for transient docking of these Munc18 isoforms during GSIS. Towards this, macromolecular complexes composed of Munc18c, Doc2b and Munc18-1 were detected in ß-cells. In vitro interaction assays indicated that Doc2b is required to bridge the interaction between Munc18c and Munc18-1 in the macromolecular complex; Munc18c and Munc18-1 failed to associate in the absence of Doc2b. Competition-based GST-Doc2b interaction assays revealed that Doc2b could simultaneously bind both Munc18-1 and Munc18c. Hence these data support a working model wherein Doc2b functions as a docking platform/scaffold for transient interactions with the multiple Munc18 isoforms operative in insulin release, promoting SNARE assembly.


Asunto(s)
Insulinas Bifásicas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas Munc18/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Proteínas de Unión al Calcio/química , Exocitosis , Glucosa/química , Glucosa/aislamiento & purificación , Glucosa/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Ratones Noqueados , Complejos Multiproteicos , Proteínas Munc18/química , Proteínas del Tejido Nervioso/química , Ratas , Proteínas SNARE/metabolismo
12.
Mol Cell Neurosci ; 62: 10-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25064143

RESUMEN

Calcium/calmodulin-dependent protein kinase II (CaMKII) is recognized as a key element in encoding depolarization activity of excitable cells into facilitated voltage-gated Ca(2+) channel (VGCC) function. Less is known about the participation of CaMKII in regulating VGCCs in resting cells. We examined constitutive CaMKII control of Ca(2+) currents in peripheral sensory neurons acutely isolated from dorsal root ganglia (DRGs) of adult rats. The small molecule CaMKII inhibitor KN-93 (1.0µM) reduced depolarization-induced ICa by 16-30% in excess of the effects produced by the inactive homolog KN-92. The specificity of CaMKII inhibition on VGCC function was shown by the efficacy of the selective CaMKII blocking peptide autocamtide-2-related inhibitory peptide in a membrane-permeable myristoylated form, which also reduced VGCC current in resting neurons. Loss of VGCC currents is primarily due to reduced N-type current, as application of mAIP selectively reduced N-type current by approximately 30%, and prior N-type current inhibition eliminated the effect of mAIP on VGCCs, while prior block of L-type channels did not reduce the effect of mAIP on total ICa. T-type currents were not affected by mAIP in resting DRG neurons. Transduction of sensory neurons in vivo by DRG injection of an adeno-associated virus expressing AIP also resulted in a loss of N-type currents. Together, these findings reveal a novel molecular adaptation whereby sensory neurons retain CaMKII support of VGCCs despite remaining quiescent.


Asunto(s)
Canales de Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Ganglios Espinales/citología , Células Receptoras Sensoriales/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Masculino , Potenciales de la Membrana/fisiología , Neuronas Aferentes/metabolismo , Ratas Sprague-Dawley , Células Receptoras Sensoriales/efectos de los fármacos
13.
J Biol Chem ; 288(20): 14599-14611, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23543737

RESUMEN

The extent of calcium/calmodulin-dependent protein kinase II (CaMKII) inactivation in the brain after ischemia correlates with the extent of damage. We have previously shown that a loss of CaMKII activity in neurons is detrimental to neuronal viability by inducing excitotoxic glutamate release. In the current study we extend these findings to show that the ability of astrocytes to buffer extracellular glutamate is reduced when CaMKII is inhibited. Furthermore, CaMKII inhibition in astrocytes is associated with the rapid onset of intracellular calcium oscillations. Surprisingly, this rapid calcium influx is blocked by the N-type calcium channel antagonist, ω-conotoxin. Although the function of N-type calcium channels within astrocytes is controversial, these voltage-gated calcium channels have been linked to calcium-dependent vesicular gliotransmitter release. When extracellular glutamate and ATP levels are measured after CaMKII inhibition within our enriched astrocyte cultures, no alterations in glutamate levels are observed, whereas ATP levels in the extracellular environment significantly increase. Extracellular ATP accumulation associated with CaMKII inhibition contributes both to calcium oscillations within astrocytes and ultimately cortical neuron toxicity. Thus, a loss of CaMKII signaling within astrocytes dysregulates glutamate uptake and supports ATP release, two processes that would compromise neuronal survival after ischemic/excitotoxic insults.


Asunto(s)
Astrocitos/citología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ácido Glutámico/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Canales de Calcio Tipo N/metabolismo , Señalización del Calcio/efectos de los fármacos , Comunicación Celular , Supervivencia Celular , Técnicas de Cocultivo , Modelos Biológicos , Enfermedades Neurodegenerativas/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Neurotoxinas/metabolismo , Ratas , Ratas Sprague-Dawley
14.
J Neurosci ; 32(34): 11737-49, 2012 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-22915116

RESUMEN

Currents through voltage-gated Ca²âº channels (I(Ca)) may be regulated by cytoplasmic Ca²âº levels ([Ca²âº](c)), producing Ca²âº-dependent inactivation (CDI) or facilitation (CDF). Since I(Ca) regulates sensory neuron excitability, altered CDI or CDF could contribute to pain generation after peripheral nerve injury. We explored this by manipulating [Ca²âº](c) while recording I(Ca) in rat sensory neurons. In uninjured neurons, elevating [Ca²âº](c) with a conditioning prepulse (-15 mV, 2 s) inactivated I(Ca) measured during subsequent test pulses (-15 mV, 5 ms). This inactivation was Ca²âº-dependent (CDI), since it was decreased with elimination of Ca²âº influx by depolarization to above the I(Ca) reversal potential, with high intracellular Ca²âº buffering (EGTA 10 mm or BAPTA 20 mm), and with substitution of Ba²âº for extracellular Ca²âº, revealing a residual voltage-dependent inactivation. At longer latencies after conditioning (>6 s), I(Ca) recovered beyond baseline. This facilitation also proved to be Ca²âº-dependent (CDF) using the protocols limiting cytoplasmic Ca²âº elevation. Ca²âº/calmodulin-dependent protein kinase II (CaMKII) blockers applied by bath (KN-93, myristoyl-AIP) or expressed selectively in the sensory neurons (AIP) reduced CDF, unlike their inactive analogues. Protein kinase C inhibition (chelerythrine) had no effect. Selective blockade of N-type Ca²âº channels eliminated CDF, whereas L-type channel blockade had no effect. Following nerve injury, CDI was unaffected, but CDF was eliminated in axotomized neurons. Excitability of sensory neurons in intact ganglia from control animals was diminished after a similar conditioning pulse, but this regulation was eliminated by injury. These findings indicate that I(Ca) in sensory neurons is subject to both CDI and CDF, and that hyperexcitability following injury-induced loss of CDF may result from diminished CaMKII activity.


Asunto(s)
Fenómenos Biofísicos/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Neuronas Aferentes/fisiología , Traumatismos de los Nervios Periféricos/patología , Transducción de Señal/fisiología , Análisis de Varianza , Animales , Fenómenos Biofísicos/efectos de los fármacos , Biofisica , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Quelantes/farmacología , Dantroleno/farmacología , Interacciones Farmacológicas , Ácido Egtácico/análogos & derivados , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Ganglios Espinales/citología , Vectores Genéticos/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Laminectomía , Masculino , Potenciales de la Membrana/efectos de los fármacos , Neuronas Aferentes/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Técnicas de Placa-Clamp , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de los Nervios Periféricos/enzimología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
15.
J Biol Chem ; 287(11): 8495-506, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22253441

RESUMEN

Aberrant glutamate and calcium signalings are neurotoxic to specific neuronal populations. Calcium/calmodulin-dependent kinase II (CaMKII), a multifunctional serine/threonine protein kinase in neurons, is believed to regulate neurotransmission and synaptic plasticity in response to calcium signaling produced by neuronal activity. Importantly, several CaMKII substrates control neuronal structure, excitability, and plasticity. Here, we demonstrate that CaMKII inhibition for >4 h using small molecule and peptide inhibitors induces apoptosis in cultured cortical neurons. The neuronal death produced by prolonged CaMKII inhibition is associated with an increase in TUNEL staining and caspase-3 cleavage and is blocked with the translation inhibitor cycloheximide. Thus, this neurotoxicity is consistent with apoptotic mechanisms, a conclusion that is further supported by dysregulated calcium signaling with CaMKII inhibition. CaMKII inhibitory peptides also enhance the number of action potentials generated by a ramp depolarization, suggesting increased neuronal excitability with a loss of CaMKII activity. Extracellular glutamate concentrations are augmented with prolonged inhibition of CaMKII. Enzymatic buffering of extracellular glutamate and antagonism of the NMDA subtype of glutamate receptors prevent the calcium dysregulation and neurotoxicity associated with prolonged CaMKII inhibition. However, in the absence of CaMKII inhibition, elevated glutamate levels do not induce neurotoxicity, suggesting that a combination of CaMKII inhibition and elevated extracellular glutamate levels results in neuronal death. In sum, the loss of CaMKII observed with multiple pathological states in the central nervous system, including epilepsy, brain trauma, and ischemia, likely exacerbates programmed cell death by sensitizing vulnerable neuronal populations to excitotoxic glutamate signaling and inducing an excitotoxic insult itself.


Asunto(s)
Potenciales de Acción , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Ácido Glutámico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Animales , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Células Cultivadas , Cicloheximida/farmacología , Epilepsia/metabolismo , Epilepsia/patología , Neuronas/patología , Inhibidores de la Síntesis de la Proteína/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
16.
J Biol Chem ; 287(24): 19856-69, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22514276

RESUMEN

The cardiac Na(+) channel Na(V)1.5 current (I(Na)) is critical to cardiac excitability, and altered I(Na) gating has been implicated in genetic and acquired arrhythmias. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is up-regulated in heart failure and has been shown to cause I(Na) gating changes that mimic those induced by a point mutation in humans that is associated with combined long QT and Brugada syndromes. We sought to identify the site(s) on Na(V)1.5 that mediate(s) the CaMKII-induced alterations in I(Na) gating. We analyzed both CaMKII binding and CaMKII-dependent phosphorylation of the intracellularly accessible regions of Na(V)1.5 using a series of GST fusion constructs, immobilized peptide arrays, and soluble peptides. A stable interaction between δ(C)-CaMKII and the intracellular loop between domains 1 and 2 of Na(V)1.5 was observed. This region was also phosphorylated by δ(C)-CaMKII, specifically at the Ser-516 and Thr-594 sites. Wild-type (WT) and phosphomutant hNa(V)1.5 were co-expressed with GFP-δ(C)-CaMKII in HEK293 cells, and I(Na) was recorded. As observed in myocytes, CaMKII shifted WT I(Na) availability to a more negative membrane potential and enhanced accumulation of I(Na) into an intermediate inactivated state, but these effects were abolished by mutating either of these sites to non-phosphorylatable Ala residues. Mutation of these sites to phosphomimetic Glu residues negatively shifted I(Na) availability without the need for CaMKII. CaMKII-dependent phosphorylation of Na(V)1.5 at multiple sites (including Thr-594 and Ser-516) appears to be required to evoke loss-of-function changes in gating that could contribute to acquired Brugada syndrome-like effects in heart failure.


Asunto(s)
Síndrome de Brugada/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Insuficiencia Cardíaca/metabolismo , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Canales de Sodio/metabolismo , Animales , Síndrome de Brugada/genética , Síndrome de Brugada/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Células HEK293 , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Humanos , Activación del Canal Iónico/genética , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/patología , Potenciales de la Membrana/genética , Ratones , Proteínas Musculares/genética , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Canal de Sodio Activado por Voltaje NAV1.5 , Fosforilación/genética , Estructura Terciaria de Proteína , Canales de Sodio/genética
17.
J Physiol ; 590(20): 5123-39, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22826127

RESUMEN

The deletion of phenylalanine 1486 (F1486del) in the human cardiac voltage-gated sodium channel (hNav1.5) is associated with fatal long QT (LQT) syndrome. In this study we determined how F1486del impairs the functional properties of hNav1.5 and alters action potential firing in heterologous expression systems (human embryonic kidney (HEK) 293 cells) and their native cardiomyocyte background. Cells expressing hNav1.5-F1486del exhibited a loss-of-function alteration, reflected by an 80% reduction of peak current density, and several gain-of-function alterations, including reduced channel inactivation, enlarged window current, substantial augmentation of persistent late sodium current and an increase in ramp current. We also observed substantial action potential duration (APD) prolongation and prominent early afterdepolarizations (EADs) in neonatal cardiomyocytes expressing the F1486del channels, as well as in computer simulations of myocyte activity. In addition, lidocaine sensitivity was dramatically reduced, which probably contributed to the poor therapeutic outcome observed in the patient carrying the hNav1.5-F1486del mutation. Therefore, despite the significant reduction in peak current density, the F1486del mutation also leads to substantial gain-of-function alterations that are sufficient to cause APD prolongation and EADs, the predominant characteristic of LQTs. These data demonstrate that hNav1.5 mutations can have complex functional consequences and highlight the importance of identifying the specific molecular defect when evaluating potential treatments for individuals with prolonged QT intervals.


Asunto(s)
Tolerancia a Medicamentos/genética , Lidocaína/farmacología , Síndrome de QT Prolongado/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Anestésicos Locales/farmacología , Animales , Animales Recién Nacidos , Antiarrítmicos/farmacología , Células HEK293 , Humanos , Técnicas In Vitro , Mutación , Miocitos Cardíacos/fisiología , Ratas , Ratas Sprague-Dawley , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología
18.
J Biol Chem ; 286(43): 37778-92, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21832084

RESUMEN

Neurological disabilities following traumatic brain injury (TBI) may be due to excitotoxic neuronal loss. The excitotoxic loss of neurons following TBI occurs largely due to hyperactivation of N-methyl-d-aspartate receptors (NMDARs), leading to toxic levels of intracellular Ca(2+). The axon guidance and outgrowth protein collapsin response mediator protein 2 (CRMP2) has been linked to NMDAR trafficking and may be involved in neuronal survival following excitotoxicity. Lentivirus-mediated CRMP2 knockdown or treatment with a CRMP2 peptide fused to HIV TAT protein (TAT-CBD3) blocked neuronal death following glutamate exposure probably via blunting toxicity from delayed calcium deregulation. Application of TAT-CBD3 attenuated postsynaptic NMDAR-mediated currents in cortical slices. In exploring modulation of NMDARs by TAT-CBD3, we found that TAT-CBD3 induced NR2B internalization in dendritic spines without altering somal NR2B surface expression. Furthermore, TAT-CBD3 reduced NMDA-mediated Ca(2+) influx and currents in cultured neurons. Systemic administration of TAT-CBD3 following a controlled cortical impact model of TBI decreased hippocampal neuronal death. These findings support TAT-CBD3 as a novel neuroprotective agent that may increase neuronal survival following injury by reducing surface expression of dendritic NR2B receptors.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Proteínas del Tejido Nervioso/farmacología , Fármacos Neuroprotectores/farmacología , Péptidos/farmacología , Proteínas Recombinantes de Fusión/farmacología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/farmacología , Animales , Lesiones Encefálicas/patología , Calcio/metabolismo , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular , Neuronas/metabolismo , Neuronas/patología , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
19.
Mol Cell Neurosci ; 46(4): 720-30, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21316454

RESUMEN

Aberrant calcium signaling is a common feature of ischemia and multiple neurodegenerative diseases. While activation of calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII) is a key event in calcium signaling, its role in excitotoxicity is controversial. Our findings demonstrate neuroprotection in neuronal cultures treated with the small molecule (KN-93) and peptide (tat-AIP and tat-CN21) inhibitors of CaMKII immediately prior to excitotoxic glutamate/glycine insult. Unlike KN-93 which blocks CaMKII activation, but not constitutively active forms of CaMKII, tat-CN21 and tat-AIP significantly reduced excitotoxicity in cultured neurons when applied post-insult. We observed that the neuroprotective effects of tat-CN21 are greatest when applied before the toxic glutamate challenge and diminish with time, with the neuroprotection associated with CaMKII inhibition diminishing back to control 3h post glutamate insult. Mechanistically, tat-CN21 inhibition of CaMKII resulted in an increase in CaMKII activity and the percentage of soluble αCaMKII observed in neuronal lysates 24h following glutamate stimulation. To address the impact of prolonged CaMKII inhibition prior to excitotoxic insult, neuronal cultures were treated with CaMKII inhibitors overnight and then subjected to a sub-maximal excitotoxic insult. In this model, CaMKII inhibition prior to insult exacerbated neuronal death, suggesting that a loss of CaMKII enhances neuronal vulnerability to glutamate. Although changes in αCaMKII or NR2B protein levels are not responsible for this enhanced glutamate vulnerability, this process is blocked by the protein translation inhibitor cycloheximide. In total, the neuroprotection afforded by CaMKII inhibition can be seen as neuroprotective immediately surrounding the excitotoxic insult, whereas sustained CaMKII inhibition produced by excitotoxicity leads to neuronal death by enhancing neuronal vulnerability to glutamate.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Secuencia de Aminoácidos , Animales , Bencilaminas/farmacología , Calcio/metabolismo , Señalización del Calcio , Células Cultivadas , Ácido Glutámico/toxicidad , Datos de Secuencia Molecular , Neuronas/citología , Neuronas/fisiología , Péptidos/genética , Péptidos/metabolismo , Péptidos/farmacología , Ratas , Ratas Sprague-Dawley , Sulfonamidas/farmacología
20.
Cells ; 11(13)2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35805192

RESUMEN

Aberrant Nav1.6 activity can induce hyperexcitability associated with epilepsy. Gain-of-function mutations in the SCN8A gene encoding Nav1.6 are linked to epilepsy development; however, the molecular mechanisms mediating these changes are remarkably heterogeneous and may involve post-translational regulation of Nav1.6. Because calcium/calmodulin-dependent protein kinase II (CaMKII) is a powerful modulator of Nav1.6 channels, we investigated whether CaMKII modulates disease-linked Nav1.6 mutants. Whole-cell voltage clamp recordings in ND7/23 cells show that CaMKII inhibition of the epilepsy-related mutation R850Q largely recapitulates the effects previously observed for WT Nav1.6. We also characterized a rare missense variant, R639C, located within a regulatory hotspot for CaMKII modulation of Nav1.6. Prediction software algorithms and electrophysiological recordings revealed gain-of-function effects for R639C mutant channel activity, including increased sodium currents and hyperpolarized activation compared to WT Nav1.6. Importantly, the R639C mutation ablates CaMKII phosphorylation at a key regulatory site, T642, and, in contrast to WT and R850Q channels, displays a distinct response to CaMKII inhibition. Computational simulations demonstrate that modeled neurons harboring the R639C or R850Q mutations are hyperexcitable, and simulating the effects of CaMKII inhibition on Nav1.6 activity in modeled neurons differentially reduced hyperexcitability. Acute CaMKII inhibition may represent a promising mechanism to attenuate gain-of-function effects produced by Nav1.6 mutations.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Epilepsia , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Mutación con Ganancia de Función , Humanos , Neuronas/metabolismo , Técnicas de Placa-Clamp
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA