Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 34(2): 286-299, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38479835

RESUMEN

Genetic diversity is critical to crop breeding and improvement, and dissection of the genomic variation underlying agronomic traits can both assist breeding and give insight into basic biological mechanisms. Although recent genome analyses in plants reveal many structural variants (SVs), most current studies of crop genetic variation are dominated by single-nucleotide polymorphisms (SNPs). The extent of the impact of SVs on global trait variation, as well as their utility in genome-wide selection, is not yet understood. In this study, we built an SV data set based on whole-genome resequencing of diverse sorghum lines (n = 363), validated the correlation of photoperiod sensitivity and variety type, and identified SV hotspots underlying the divergent evolution of cellulosic and sweet sorghum. In addition, we showed the complementary contribution of SVs for heritability of traits related to sorghum adaptation. Importantly, inclusion of SV polymorphisms in association studies revealed genotype-phenotype associations not observed with SNPs alone. Three-way genome-wide association studies (GWAS) based on whole-genome SNP, SV, and integrated SNP + SV data sets showed substantial associations between SVs and sorghum traits. The addition of SVs to GWAS substantially increased heritability estimates for some traits, indicating their important contribution to functional allelic variation at the genome level. Our discovery of the widespread impacts of SVs on heritable gene expression variation could render a plausible mechanism for their disproportionate impact on phenotypic variation. This study expands our knowledge of SVs and emphasizes the extensive impacts of SVs on sorghum.


Asunto(s)
Variación Genética , Sorghum , Sorghum/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Fenotipo , Grano Comestible/genética , Polimorfismo de Nucleótido Simple
2.
PLoS Biol ; 22(2): e3002510, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38412239

RESUMEN

Animal studies reveal that the molecular wiring of the brain can be altered by heredity, the environment, and their interaction. A deeper molecular understanding of these interactions could be a potent antidote to societal concerns of genetic determinism for human behavior, but this requires a paradigm that extends beyond traditional genome-wide association study (GWAS).


Asunto(s)
Determinismo Genético , Estudio de Asociación del Genoma Completo , Animales , Humanos , Genómica , Encéfalo , Polimorfismo de Nucleótido Simple
3.
Proc Natl Acad Sci U S A ; 119(40): e2212199119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161933

RESUMEN

Plants typically orient their organs with respect to the Earth's gravity field by a dynamic process called gravitropism. To discover conserved genetic elements affecting seedling root gravitropism, we measured the process in a set of Zea mays (maize) recombinant inbred lines with machine vision and compared the results with those obtained in a similar study of Arabidopsis thaliana. Each of the several quantitative trait loci that we mapped in both species spanned many hundreds of genes, too many to test individually for causality. We reasoned that orthologous genes may be responsible for natural variation in monocot and dicot root gravitropism. If so, pairs of orthologous genes affecting gravitropism may be present within the maize and Arabidopsis QTL intervals. A reciprocal comparison of sequences within the QTL intervals identified seven pairs of such one-to-one orthologs. Analysis of knockout mutants demonstrated a role in gravitropism for four of the seven: CCT2 functions in phosphatidylcholine biosynthesis, ATG5 functions in membrane remodeling during autophagy, UGP2 produces the substrate for cellulose and callose polymer extension, and FAMA is a transcription factor. Automated phenotyping enabled this discovery of four naturally varying components of a conserved process (gravitropism) by making it feasible to conduct the same large-scale experiment in two species.


Asunto(s)
Arabidopsis , Gravitropismo , Arabidopsis/genética , Celulosa , Gravitropismo/genética , Fosfatidilcolinas , Raíces de Plantas/genética , Polímeros , Sitios de Carácter Cuantitativo , Factores de Transcripción/genética , Zea mays/genética
4.
Plant J ; 113(5): 915-933, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36424366

RESUMEN

The soybean Rpp1 locus confers resistance to Phakopsora pachyrhizi, causal agent of rust, and resistance is usually dominant over susceptibility. However, dominance of Rpp1-mediated resistance is lost when a resistant genotype (Rpp1 or Rpp1b) is crossed with susceptible line TMG06_0011, and the mechanism of this dominant susceptibility (DS) is unknown. Sequencing the Rpp1 region reveals that the TMG06_0011 Rpp1 locus has a single nucleotide-binding site leucine-rich repeat (NBS-LRR) gene (DS-R), whereas resistant PI 594760B (Rpp1b) is similar to PI 200492 (Rpp1) and has three NBS-LRR resistance gene candidates. Evidence that DS-R is the cause of DS was reflected in virus-induced gene silencing of DS-R in Rpp1b/DS-R or Rpp1/DS-R heterozygous plants with resistance partially restored. In heterozygous Rpp1b/DS-R plants, expression of Rpp1b candidate genes was not significantly altered, indicating no effect of DS-R on transcription. Physical interaction of the DS-R protein with candidate Rpp1b resistance proteins was supported by yeast two-hybrid studies and in silico modeling. Thus, we conclude that suppression of resistance most likely does not occur at the transcript level, but instead probably at the protein level, possibly with Rpp1 function inhibited by binding to the DS-R protein. The DS-R gene was found in other soybean lines, with an estimated allele frequency of 6% in a diverse population, and also found in wild soybean (Glycine soja). The identification of a dominant susceptible NBS-LRR gene provides insight into the behavior of NBS-LRR proteins and serves as a reminder to breeders that the dominance of an R gene can be influenced by a susceptibility allele.


Asunto(s)
Phakopsora pachyrhizi , Phakopsora pachyrhizi/genética , Glycine max/genética , Proteínas Repetidas Ricas en Leucina , Genes de Plantas/genética , Sitios de Unión , Enfermedades de las Plantas/genética
5.
J Neurosci Res ; 102(1): e25257, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37814998

RESUMEN

Noncompetitive NMDA receptor (NMDAR) antagonists like phencyclidine (PCP) and ketamine cause psychosis-like symptoms in healthy humans, exacerbate schizophrenia symptoms in people with the disorder, and disrupt a range of schizophrenia-relevant behaviors in rodents, including hyperlocomotion. This is negated in mice lacking the GluN2D subunit of the NMDAR, suggesting the GluN2D subunit mediates the hyperlocomotor effects of these drugs. However, the role of GluN2D in mediating other schizophrenia-relevant NMDAR antagonist-induced behavioral disturbances, and in both sexes, is unclear. This study aimed to investigate the role of the GluN2D subunit in mediating schizophrenia-relevant behaviors induced by a range of NMDA receptor antagonists. Using both male and female GluN2D knockout (KO) mice, we examined the effects of the NMDAR antagonist's PCP, the S-ketamine enantiomer (S-ket), and the ketamine metabolite R-norketamine (R-norket) on locomotor activity, anxiety-related behavior, and recognition and short-term spatial memory. GluN2D-KO mice showed a blunted locomotor response to R-norket, S-ket, and PCP, a phenotype present in both sexes. GluN2D-KO mice of both sexes showed an anxious phenotype and S-ket, R-norket, and PCP showed anxiolytic effects that were dependent on sex and genotype. S-ket disrupted spatial recognition memory in females and novel object recognition memory in both sexes, independent of genotype. This datum identifies a role for the GluN2D subunit in sex-specific effects of NMDAR antagonists and on the differential effects of the R- and S-ket enantiomers.


Asunto(s)
Ketamina , Animales , Femenino , Humanos , Masculino , Ratones , Ketamina/farmacología , Fenciclidina/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Reconocimiento en Psicología
6.
Mol Ecol ; 33(17): e17490, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39135406

RESUMEN

Plant pathogens are constantly under selection pressure for host resistance adaptation. Soybean cyst nematode (SCN, Heterodera glycines) is a major pest of soybean primarily managed through resistant cultivars; however, SCN populations have evolved virulence in response to selection pressures driven by repeated monoculture of the same genetic resistance. Resistance to SCN is mediated by multiple epistatic interactions between Rhg (for resistance to H. glycines) genes. However, the identity of SCN virulence genes that confer the ability to overcome resistance remains unknown. To identify candidate genomic regions showing signatures of selection for increased virulence, we conducted whole genome resequencing of pooled individuals (Pool-Seq) from two pairs of SCN populations adapted on soybeans with Peking-type (rhg1-a, rhg2, and Rhg4) resistance. Population differentiation and principal component analysis-based approaches identified approximately 0.72-0.79 million SNPs, the frequency of which showed potential selection signatures across multiple genomic regions. Chromosomes 3 and 6 between population pairs showed the greatest density of outlier SNPs with high population differentiation. Conducting multiple outlier detection tests to identify overlapping SNPs resulted in a total of 966 significantly differentiated SNPs, of which 285 exon SNPs were mapped to 97 genes. Of these, six genes encoded members of known stylet-secreted effector protein families potentially involved in host defence modulation including venom-allergen-like, annexin, glutathione synthetase, SPRYSEC, chitinase, and CLE effector proteins. Further functional analysis of identified candidate genes will provide new insights into the genetic mechanisms by which SCN overcomes soybean resistance and inform the development of molecular markers for rapidly screening the virulence profile of an SCN-infested field.


Asunto(s)
Resistencia a la Enfermedad , Glycine max , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Tylenchoidea , Animales , Glycine max/genética , Glycine max/parasitología , Polimorfismo de Nucleótido Simple/genética , Virulencia/genética , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Tylenchoidea/genética , Tylenchoidea/patogenicidad , Selección Genética , Genética de Población , Secuenciación Completa del Genoma
7.
NMR Biomed ; 37(8): e5142, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38494895

RESUMEN

Integrating datasets from multiple sites and scanners can increase statistical power for neuroimaging studies but can also introduce significant inter-site confounds. We evaluated the effectiveness of ComBat, an empirical Bayes approach, to combine longitudinal preclinical MRI data acquired at 4.7 or 9.4 T at two different sites in Australia. Male Sprague Dawley rats underwent MRI on Days 2, 9, 28, and 150 following moderate/severe traumatic brain injury (TBI) or sham injury as part of Project 1 of the NIH/NINDS-funded Centre Without Walls EpiBioS4Rx project. Diffusion-weighted and multiple-gradient-echo images were acquired, and outcomes included QSM, FA, and ADC. Acute injury measures including apnea and self-righting reflex were consistent between sites. Mixed-effect analysis of ipsilateral and contralateral corpus callosum (CC) summary values revealed a significant effect of site on FA and ADC values, which was removed following ComBat harmonization. Bland-Altman plots for each metric showed reduced variability across sites following ComBat harmonization, including for QSM, despite appearing to be largely unaffected by inter-site differences and no effect of site observed. Following harmonization, the combined inter-site data revealed significant differences in the imaging metrics consistent with previously reported outcomes. TBI resulted in significantly reduced FA and increased susceptibility in the ipsilateral CC, and significantly reduced FA in the contralateral CC compared with sham-injured rats. Additionally, TBI rats also exhibited a reversal in ipsilateral CC ADC values over time with significantly reduced ADC at Day 9, followed by increased ADC 150 days after injury. Our findings demonstrate the need for harmonizing multi-site preclinical MRI data and show that this can be successfully achieved using ComBat while preserving phenotypical changes due to TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Imagen por Resonancia Magnética , Ratas Sprague-Dawley , Animales , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Masculino , Ratas , Teorema de Bayes
8.
Epilepsia ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102253

RESUMEN

OBJECTIVE: Many people with epilepsy experience comorbid anxiety and depression, and antidepressants remain a primary treatment for this. Emerging evidence suggests that these agents may modulate epileptogenesis to influence disease severity. Here, we assessed how treatment with the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine impacts epileptogenic, behavioral, and pathological sequelae following status epilepticus. METHODS: Male Wistar rats received kainic acid to induce status epilepticus (SE) or vehicle (sham). Animals then received either fluoxetine (10 mg/kg/day) or vehicle for 8 weeks via subcutaneous osmotic pump. Video-electroencephalography was recorded continuously until behavioral testing at day 56, including assessments of anxiety- and depression-like behavior and spatial cognition. Postmortem immunocytochemistry studies examined mossy fiber sprouting. RESULTS: Fluoxetine treatment significantly accelerated epileptogenesis following SE, reducing the average period to the first spontaneous seizure (from 32 days [vehicle] to 6 days [fluoxetine], p < .01). Also, fluoxetine exposure magnified the severity of the resultant epilepsy, increasing seizure frequency compared to vehicle (p < .01). Exposure to fluoxetine was associated with improved anxiety- and depression-like behaviors but significantly worsened cognition. Mossy fiber sprouting was more pronounced in fluoxetine-treated rats compared to vehicle (p < .0001). SIGNIFICANCE: Our studies demonstrate that, using a model exhibiting spontaneous seizures, epileptogenesis is accelerated and magnified by fluoxetine, an effect that may be related to more severe pathological neuroplasticity. The differential influence of fluoxetine on behavior indicates that different circuitry and mechanisms are responsible for these comorbidities. These findings suggest that caution should be exercised when prescribing SSRI antidepressants to people at risk of developing epilepsy.

9.
MMWR Morb Mortal Wkly Rep ; 73(3): 62-65, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38271279

RESUMEN

Although infections resulting from cosmetic surgery performed outside the United States have been regularly reported, deaths have rarely been identified. During 2009-2022, 93 U.S. citizens died after receiving cosmetic surgery in the Dominican Republic. The number of deaths increased from a mean of 4.1 per year during 2009-2018 to a mean of 13.0 during 2019-2022 with a peak in of 17 in 2020. A subset of post-cosmetic surgery deaths occurring during peak years was investigated, and most deaths were found to be the result of embolic events (fat emboli or venous thromboembolism) for which a high proportion of the patients who died had risk factors, including obesity and having multiple procedures performed during the same operation. These risk factors might have been mitigated or prevented with improved surgical protocols and postoperative medical care, including prophylactic measures against venous thromboembolism. U.S. citizens interested in receiving elective cosmetic surgery outside the United States should consult with their health care professionals regarding their risk for adverse outcomes. Public health authorities can support provider education on the importance of preoperative patient evaluation and the potential danger of performing multiple cosmetic procedures in one operation.


Asunto(s)
Cirugía Plástica , Tromboembolia Venosa , Estados Unidos/epidemiología , Humanos , República Dominicana/epidemiología , Factores de Riesgo
10.
Neuroimage ; 272: 120025, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36958619

RESUMEN

Humans rapidly extract diverse and complex information from ongoing social interactions, but the perceptual and neural organization of the different aspects of social perception remains unresolved. We showed short movie clips with rich social content to 97 healthy participants while their haemodynamic brain activity was measured with fMRI. The clips were annotated moment-to-moment for a large set of social features and 45 of the features were evaluated reliably between annotators. Cluster analysis of the social features revealed that 13 dimensions were sufficient for describing the social perceptual space. Three different analysis methods were used to map the social perceptual processes in the human brain. Regression analysis mapped regional neural response profiles for different social dimensions. Multivariate pattern analysis then established the spatial specificity of the responses and intersubject correlation analysis connected social perceptual processing with neural synchronization. The results revealed a gradient in the processing of social information in the brain. Posterior temporal and occipital regions were broadly tuned to most social dimensions and the classifier revealed that these responses showed spatial specificity for social dimensions; in contrast Heschl gyri and parietal areas were also broadly associated with different social signals, yet the spatial patterns of responses did not differentiate social dimensions. Frontal and subcortical regions responded only to a limited number of social dimensions and the spatial response patterns did not differentiate social dimension. Altogether these results highlight the distributed nature of social processing in the brain.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Lóbulo Occipital/fisiología , Imagen por Resonancia Magnética , Percepción Social
11.
Neuroimage ; 273: 120082, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37030414

RESUMEN

Laughter and crying are universal signals of prosociality and distress, respectively. Here we investigated the functional brain basis of perceiving laughter and crying using naturalistic functional magnetic resonance imaging (fMRI) approach. We measured haemodynamic brain activity evoked by laughter and crying in three experiments with 100 subjects in each. The subjects i) viewed a 20-minute medley of short video clips, and ii) 30 min of a full-length feature film, and iii) listened to 13.5 min of a radio play that all contained bursts of laughter and crying. Intensity of laughing and crying in the videos and radio play was annotated by independent observes, and the resulting time series were used to predict hemodynamic activity to laughter and crying episodes. Multivariate pattern analysis (MVPA) was used to test for regional selectivity in laughter and crying evoked activations. Laughter induced widespread activity in ventral visual cortex and superior and middle temporal and motor cortices. Crying activated thalamus, cingulate cortex along the anterior-posterior axis, insula and orbitofrontal cortex. Both laughter and crying could be decoded accurately (66-77% depending on the experiment) from the BOLD signal, and the voxels contributing most significantly to classification were in superior temporal cortex. These results suggest that perceiving laughter and crying engage distinct neural networks, whose activity suppresses each other to manage appropriate behavioral responses to others' bonding and distress signals.


Asunto(s)
Llanto , Risa , Humanos , Llanto/fisiología , Encéfalo/fisiología , Mapeo Encefálico , Giro del Cíngulo/fisiología
12.
Hum Brain Mapp ; 44(6): 2543-2556, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36773282

RESUMEN

Sex differences in brain activity evoked by sexual stimuli remain elusive despite robust evidence for stronger enjoyment of and interest toward sexual stimuli in men than in women. To test whether visual sexual stimuli evoke different brain activity patterns in men and women, we measured hemodynamic brain activity induced by visual sexual stimuli in two experiments with 91 subjects (46 males). In one experiment, the subjects viewed sexual and nonsexual film clips, and dynamic annotations for nudity in the clips were used to predict hemodynamic activity. In the second experiment, the subjects viewed sexual and nonsexual pictures in an event-related design. Men showed stronger activation than women in the visual and prefrontal cortices and dorsal attention network in both experiments. Furthermore, using multivariate pattern classification we could accurately predict the sex of the subject on the basis of the brain activity elicited by the sexual stimuli. The classification generalized across the experiments indicating that the sex differences were task-independent. Eye tracking data obtained from an independent sample of subjects (N = 110) showed that men looked longer than women at the chest area of the nude female actors in the film clips. These results indicate that visual sexual stimuli evoke discernible brain activity patterns in men and women which may reflect stronger attentional engagement with sexual stimuli in men.


Asunto(s)
Nivel de Alerta , Conducta Sexual , Humanos , Femenino , Masculino , Nivel de Alerta/fisiología , Conducta Sexual/fisiología , Caracteres Sexuales , Placer , Percepción
13.
J Exp Bot ; 74(17): 5153-5165, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37551820

RESUMEN

Height is a critical component of plant architecture, significantly affecting crop yield. The genetic basis of this trait in soybean remains unclear. In this study, we report the characterization of the Compact mutant of soybean, which has short internodes. The candidate gene was mapped to chromosome 17, and the interval containing the causative mutation was further delineated using biparental mapping. Whole-genome sequencing of the mutant revealed an 8.7 kb deletion in the promoter of the Glyma.17g145200 gene, which encodes a member of the class III gibberellin (GA) 2-oxidases. The mutation has a dominant effect, likely via increased expression of the GA 2-oxidase transcript observed in green tissue, as a result of the deletion in the promoter of Glyma.17g145200. We further demonstrate that levels of GA precursors are altered in the Compact mutant, supporting a role in GA metabolism, and that the mutant phenotype can be rescued with exogenous GA3. We also determined that overexpression of Glyma.17g145200 in Arabidopsis results in dwarfed plants. Thus, gain of promoter activity in the Compact mutant leads to a short internode phenotype in soybean through altered metabolism of gibberellin precursors. These results provide an example of how structural variation can control an important crop trait and a role for Glyma.17g145200 in soybean architecture, with potential implications for increasing crop yield.


Asunto(s)
Giberelinas , Glycine max , Glycine max/genética , Glycine max/metabolismo , Giberelinas/metabolismo , Mutación , Fenotipo
14.
Epilepsia ; 64(10): 2806-2817, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37539645

RESUMEN

OBJECTIVE: More than one third of mesial temporal lobe epilepsy (MTLE) patients are resistant to current antiseizure medications (ASMs), and half experience mild-to-moderate adverse effects of ASMs. There is therefore a strong need to develop and test novel ASMs. The objective of this work is to evaluate the pharmacokinetics and neurological toxicity of E2730, a novel uncompetitive inhibitor of γ-aminobutyric acid transporter-1, and to test its seizure suppression effects in a rat model of chronic MTLE. METHODS: We first examined plasma levels and adverse neurological effects of E2730 in healthy Wistar rats. Adult male rats were implanted with osmotic pumps delivering either 10, 20, or 100 mg/kg/day of E2730 subcutaneously for 1 week. Blood sampling and behavioral assessments were performed at several timepoints. We next examined whether E2730 suppressed seizures in rats with chronic MTLE. These rats were exposed to kainic acid-induced status epilepticus, and 9 weeks later, when chronic epilepsy was established, were assigned to receive one of the three doses of E2730 or vehicle for 1 week in a randomized crossover design. Continuous video-electroencephalographic monitoring was acquired during the treatment period to evaluate epileptic seizures. RESULTS: Plasma levels following continuous infusion of E2730 showed a clear dose-related increase in concentration. The drug was well tolerated at all doses, and any sedation or neuromotor impairment was mild and transient, resolving within 48 h of treatment initiation. Remarkably, E2730 treatment in chronically epileptic rats led to seizure suppression in a dose-dependent manner, with 65% of rats becoming seizure-free at the highest dose tested. Mean seizure class did not differ between the treatment groups. SIGNIFICANCE: This study shows that continuous subcutaneous infusion of E2730 over 7 days results in a marked, dose-dependent suppression of spontaneous recurrent seizures, with minimal adverse neurological effects, in a rat model of chronic MTLE. E2730 shows strong promise as an effective new ASM to be translated into clinical trials.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Adulto , Ratas , Masculino , Animales , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Ratas Wistar , Convulsiones/tratamiento farmacológico , Electroencefalografía , Ácido gamma-Aminobutírico , Modelos Animales de Enfermedad , Hipocampo
15.
Cereb Cortex ; 33(2): 374-384, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-35332920

RESUMEN

Psychopathy and autism are both associated with aberrant social skills and empathy, yet only psychopaths are markedly antisocial and violent. Here, we compared the functional neural alterations underlying these two groups that both have aberrant empathetic abilities but distinct behavioral phenotypes. We studied 19 incarcerated male offenders with high psychopathic traits, 20 males with high-functioning autism, and 19 age-matched healthy controls. All groups underwent functional magnetic resonance imaging while they viewed dynamic happy, angry, and disgusted faces or listened to laughter and crying sounds. Psychopathy was associated with reduced somatomotor responses to almost all expressions, while participants with autism demonstrated less marked and emotion-specific alterations in the somatomotor area. These data suggest that psychopathy and autism involve both common and distinct functional alterations in the brain networks involved in the socioemotional processing. The alterations are more profound in psychopathy, possibly reflecting the more severely disturbed socioemotional brain networks in this population.


Asunto(s)
Trastorno Autístico , Humanos , Masculino , Trastorno Autístico/diagnóstico por imagen , Emociones/fisiología , Encéfalo/diagnóstico por imagen , Empatía , Mapeo Encefálico , Imagen por Resonancia Magnética
16.
Proc Natl Acad Sci U S A ; 117(29): 17135-17141, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32631983

RESUMEN

For social animals, the genotypes of group members affect the social environment, and thus individual behavior, often indirectly. We used genome-wide association studies (GWAS) to determine the influence of individual vs. group genotypes on aggression in honey bees. Aggression in honey bees arises from the coordinated actions of colony members, primarily nonreproductive "soldier" bees, and thus, experiences evolutionary selection at the colony level. Here, we show that individual behavior is influenced by colony environment, which in turn, is shaped by allele frequency within colonies. Using a population with a range of aggression, we sequenced individual whole genomes and looked for genotype-behavior associations within colonies in a common environment. There were no significant correlations between individual aggression and specific alleles. By contrast, we found strong correlations between colony aggression and the frequencies of specific alleles within colonies, despite a small number of colonies. Associations at the colony level were highly significant and were very similar among both soldiers and foragers, but they covaried with one another. One strongly significant association peak, containing an ortholog of the Drosophila sensory gene dpr4 on linkage group (chromosome) 7, showed strong signals of both selection and admixture during the evolution of gentleness in a honey bee population. We thus found links between colony genetics and group behavior and also, molecular evidence for group-level selection, acting at the colony level. We conclude that group genetics dominates individual genetics in determining the fatal decision of honey bees to sting.


Asunto(s)
Agresión , Abejas/genética , Frecuencia de los Genes/genética , Genoma de los Insectos/genética , Animales , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Conducta Social
17.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37511595

RESUMEN

Glutamate N-methyl-D-aspartate receptor (NMDAR) hypofunction has been proposed to underlie schizophrenia symptoms. This theory arose from the observation that administration of NMDAR antagonists, which are compounds that inhibit NMDAR activity, reproduces behavioural and molecular schizophrenia-like phenotypes, including hallucinations, delusions and cognitive impairments in healthy humans and animal models. However, the role of specific NMDAR subunits in these schizophrenia-relevant phenotypes is largely unknown. Mounting evidence implicates the GluN2D subunit of NMDAR in some of these symptoms and pathology. Firstly, genetic and post-mortem studies show changes in the GluN2D subunit in people with schizophrenia. Secondly, the psychosis-inducing effects of NMDAR antagonists are blunted in GluN2D-knockout mice, suggesting that the GluN2D subunit mediates NMDAR-antagonist-induced psychotomimetic effects. Thirdly, in the mature brain, the GluN2D subunit is relatively enriched in parvalbumin (PV)-containing interneurons, a cell type hypothesized to underlie the cognitive symptoms of schizophrenia. Lastly, the GluN2D subunit is widely and abundantly expressed early in development, which could be of importance considering schizophrenia is a disorder that has its origins in early neurodevelopment. The limitations of currently available therapies warrant further research into novel therapeutic targets such as the GluN2D subunit, which may help us better understand underlying disease mechanisms and develop novel and more effective treatment options.


Asunto(s)
Esquizofrenia , Animales , Humanos , Ratones , Encéfalo/metabolismo , Interneuronas/metabolismo , Ratones Noqueados , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/metabolismo
18.
BMC Bioinformatics ; 23(1): 74, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35172714

RESUMEN

BACKGROUND: CRISPR/Cas9 technology has become an important tool to generate targeted, highly specific genome mutations. The technology has great potential for crop improvement, as crop genomes are tailored to optimize specific traits over generations of breeding. Many crops have highly complex and polyploid genomes, particularly those used for bioenergy or bioproducts. The majority of tools currently available for designing and evaluating gRNAs for CRISPR experiments were developed based on mammalian genomes that do not share the characteristics or design criteria for crop genomes. RESULTS: We have developed an open source tool for genome-wide design and evaluation of gRNA sequences for CRISPR experiments, CROPSR. The genome-wide approach provides a significant decrease in the time required to design a CRISPR experiment, including validation through PCR, at the expense of an overhead compute time required once per genome, at the first run. To better cater to the needs of crop geneticists, restrictions imposed by other packages on design and evaluation of gRNA sequences were lifted. A new machine learning model was developed to provide scores while avoiding situations in which the currently available tools sometimes failed to provide guides for repetitive, A/T-rich genomic regions. We show that our gRNA scoring model provides a significant increase in prediction accuracy over existing tools, even in non-crop genomes. CONCLUSIONS: CROPSR provides the scientific community with new methods and a new workflow for performing CRISPR/Cas9 knockout experiments. CROPSR reduces the challenges of working in crops, and helps speed gRNA sequence design, evaluation and validation. We hope that the new software will accelerate discovery and reduce the number of failed experiments.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Kinetoplastida , Animales , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Genoma , Fitomejoramiento , ARN Guía de Kinetoplastida/genética , Programas Informáticos
19.
Neurobiol Dis ; 168: 105688, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35288303

RESUMEN

OBJECTIVE: Status epilepticus (SE) models in rodents are commonly used to research mesial temporal lobe epilepsy (mTLE) in translational epilepsy research. However, due to differences in susceptibility of mice strains to chemoconvulsants, developing this model in mice is challenging. Mice offer experimental advantages; in particular, the ability to use transgenic strains could provide novel insights about neurobiological mechanisms or ease of genetic modification to test potential therapeutic targets. This study aimed to characterise the neuroinflammation, epileptic seizures and behavioural comorbidities after self-sustained Electrical Status Epilepticus (SSSE) in C57BL/6J mice. METHODS: SSSE was induced in C57BL/6J mice via prolonged electrical stimulation through a bipolar electrode implanted in the ventral hippocampus. Video electroencephalography (vEEG) monitoring was then performed between 1st month (acute timepoint) and 4th month (chronic timepoint). Brain tissues were collected at two timepoints for gene expression and immunohistochemical analysis: 7-days and 16-weeks post-SE. Additionally, at the chronic timepoint, animals underwent a series of neurobehavioural tests. RESULTS: Sixty percent of animals that underwent SSSE developed spontaneous seizures within the first month, and an additional 25% developed seizures at the chronic timepoint. The number of seizures per week during the chronic period ranged from 0.2 to 15.7. Mortality rate was ~9% during or after SSSE. SSSE animals displayed significant spatial memory impairment and depression-like behaviour compared to sham animals. mRNA expression of inflammatory cytokines was upregulated at 7-days following SE, but equal to sham levels at 16-weeks. SIGNIFICANCE: This study provides evidence that SSSE in C57BL/6J mice induces epileptic seizures consistent with those seen in patients with mTLE, along with cognitive and behavioural comorbidities. This model therefore has the potential to be used experimentally to uncover mechanisms to target against epileptogenesis, or to test novel treatment approaches.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Estado Epiléptico , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Convulsiones , Estado Epiléptico/metabolismo
20.
Plant Biotechnol J ; 20(2): 283-296, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34532941

RESUMEN

The soybean cyst nematode (SCN) is one of the most important causes of soybean yield loss. The major source of genetic resistance to SCN is the Rhg1 repeat, a tandem copy number polymorphism of three genes. The roles of these genes are only partially understood. Moreover, nematode populations virulent on Rhg1-carrying soybeans are becoming more common, increasing the need to understand the most successful genetic resistance mechanism. Here, we show that a Rhg1-locus gene (Glyma.18G02270) encoding a wound-inducible protein (WI12Rhg1 ) is needed for SCN resistance. Furthermore, knockout of WI12Rhg1 reduces the expression of DELLA18, and the expression of WI12Rhg1 is itself induced by either JA, SA or GA. The content of the defence hormone SA is significantly lower whilst GA12 and GA53 are increased in WI12Rhg1 knockout roots compared with unedited hairy roots. We find that WI12Rhg1 directly interacts with DELLA18 (Glyma.18G040000) in yeast and plants and that double knockout of DELLA18 and its homeolog DELLA11 (Glyma.11G216500) significantly reduces SCN resistance and alters the root morphology. As DELLA proteins are implicated in hormone signalling, we explored the content of defence hormones (JA and SA) in DELLA knockout and unedited roots, finding reduced levels of JA and SA after the knockout of DELLA. Additionally, the treatment of DELLA-knockout roots with JA or SA rescues SCN resistance lost by the knockout. Meanwhile, the SCN resistance of unedited roots decreases after the treatment with GA, but increases with JA or SA. Our findings highlight the critical roles of WI12Rhg1 and DELLA proteins in SCN resistance through interconnection with hormone signalling.


Asunto(s)
Quistes , Tylenchoidea , Animales , Resistencia a la Enfermedad/genética , Hormonas/metabolismo , Enfermedades de las Plantas/genética , Glycine max/genética , Glycine max/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA