RESUMEN
Solar cells based on metal halide perovskites are one of the most promising photovoltaic technologies1-4. Over the past few years, the long-term operational stability of such devices has been greatly improved by tuning the composition of the perovskites5-9, optimizing the interfaces within the device structures10-13, and using new encapsulation techniques14,15. However, further improvements are required in order to deliver a longer-lasting technology. Ion migration in the perovskite active layer-especially under illumination and heat-is arguably the most difficult aspect to mitigate16-18. Here we incorporate ionic liquids into the perovskite film and thence into positive-intrinsic-negative photovoltaic devices, increasing the device efficiency and markedly improving the long-term device stability. Specifically, we observe a degradation in performance of only around five per cent for the most stable encapsulated device under continuous simulated full-spectrum sunlight for more than 1,800 hours at 70 to 75 degrees Celsius, and estimate that the time required for the device to drop to eighty per cent of its peak performance is about 5,200 hours. Our demonstration of long-term operational, stable solar cells under intense conditions is a key step towards a reliable perovskite photovoltaic technology.
RESUMEN
Mössbauerite, a trivalent iron-only layered oxyhydroxide, has been recently identified as an electrocatalyst for water oxidation. We investigated the material as potential cocatalyst for photoelectrochemical water oxidation on semiconductor photoanodes. The band edge positions of mössbauerite were determined for the first time with a combination of Mott-Schottky analysis and UV-vis diffuse reflectance spectroscopy. The positive value of the Mott-Schottky slope and the flatband potential of 0.34 V vs reversible hydrogen electrode (RHE) identifies the material as an n-type semiconductor, but bare mössbauerite does not produce noticeable photocurrent during water oxidation. Type-II heterojunction formation by facile drop-casting with WO3 thin films yielded photoanodes with amended charge carrier separation and photocurrents up to 1.22 mA cm-2 at 1.23 V vs RHE. Mössbauerite is capable of increasing the charge carrier separation at lower potential and improving the photocurrent during photoelectrochemical water oxidation. The rise in photocurrent of the mössbauerite-functionalized WO3 photoanode thus originates from improved charge carrier separation and augmented hole collection efficiency. Our results highlight the potential of mössbauerite as a second-phase catalyst for semiconductor electrodes.
RESUMEN
Interfaces play a crucial role in semiconductor devices, but in many device architectures they are nanostructured, disordered and buried away from the surface of the sample. Conventional optical, X-ray and photoelectron probes often fail to provide interface-specific information in such systems. Here we develop an all-optical time-resolved method to probe the local energetic landscape and electronic dynamics at such interfaces, based on the Stark effect caused by electron-hole pairs photo-generated across the interface. Using this method, we found that the electronically active sites at the polymer/fullerene interfaces in model bulk-heterojunction blends fall within the low-energy tail of the absorption spectrum. This suggests that these sites are highly ordered compared with the bulk of the polymer film, leading to large wavefunction delocalization and low site energies. We also detected a 100 fs migration of holes from higher- to lower-energy sites, consistent with these charges moving ballistically into more ordered polymer regions. This ultrafast charge motion may be key to separating electron-hole pairs into free charges against the Coulomb interaction.
Asunto(s)
Fulerenos/química , Óptica y Fotónica/métodos , Semiconductores , Óptica y Fotónica/instrumentaciónRESUMEN
The high-mobility n-type donor/acceptor polymer PNDIT2 is well-known to form aggregates in solution depending on the solvent used. To gain additional insight into this process, we probed the local environment of triplet excitons in two different solvents and with two different polymer chain lengths using time-resolved electron paramagnetic resonance (TREPR) spectroscopy. Results clearly show aggregation to introduce a high degree of local order in the polymer and to dramatically enhance the delocalisation of the exciton. Furthermore, triplet exciton delocalisation is only affected by the solvent used and hence by aggregate formation, not by chain length. Finally, aggregation changes the mode of delocalisation from intrachain to interchain when forming aggregates, the latter mode dominating as well in thin films. Taken together, TREPR proves to be a valuable tool for investigating aggregation and order in polymers on a molecular length-scale, ideally complementing preceding optical data.
RESUMEN
Organic-inorganic metal halide perovskites (e.g., CH3 NH3 PbI3-x Clx ) emerge as a promising optoelectronic material. However, the Shockley-Queisser limit for the power conversion efficiency (PCE) of perovskite-based photovoltaic devices is still not reached. Nonradiative recombination pathways may play a significant role and appear as photoluminescence (PL) inactive (or dark) areas on perovskite films. Although these observations are related to the presence of ions/defects, the underlying fundamental physics and detailed microscopic processes, concerning trap/defect status, ion migration, etc., still remain poorly understood. Here correlated wide-field PL microscopy and impedance spectroscopy are utilized on perovskite films to in situ investigate both the spatial and the temporal evolution of these PL inactive areas under external electric fields. The formation of PL inactive domains is attributed to the migration and accumulation of iodide ions under external fields. Hence, we are able to characterize the kinetic processes and determine the drift velocities of these ions. In addition, it is shown that I2 vapor directly affects the PL quenching of a perovskite film, which provides evidence that the migration/segregation of iodide ions plays an important role in the PL quenching and consequently limits the PCE of organometal halide-based perovskite photovoltaic devices.
RESUMEN
In solar energy harvesting devices based on molecular semiconductors, such as organic photovoltaics (OPVs) and artificial photosynthetic systems, Frenkel excitons must be dissociated via charge transfer at heterojunctions to yield free charges. What controls the rate and efficiency of charge transfer and charge separation is an important question, as it determines the overall power conversion efficiency (PCE) of these systems. In bulk heterojunctions between polymer donor and fullerene acceptors, which provide a model system to understand the fundamental dynamics of electron transfer in molecular systems, it has been established that the first step of photoinduced electron transfer can be fast, of order 100 fs. But here we report the first study which correlates differences in the electron transfer rate with electronic structure and morphology, achieved with sub-20 fs time resolution pump-probe spectroscopy. We vary both the fullerene substitution and donor/fullerene ratio which allow us to control both aggregate size and the energetic driving force for charge transfer. We observe a range of electron transfer times from polymer to fullerene, from 240 fs to as short as 37 fs. Using ultrafast electro-optical pump-push-photocurrent spectroscopy, we find the yield of free versus bound charges to be weakly dependent on the energetic driving force, but to be very strongly dependent on fullerene aggregate size and packing. Our results point toward the importance of state accessibility and charge delocalization and suggest that energetic offsets between donor and acceptor levels are not an important criterion for efficient charge generation. This provides design rules for next-generation materials to minimize losses related to driving energy and boost PCE.
RESUMEN
Inorganic-organic halide organometal perovskites have demonstrated very promising performance for opto-electronic applications, such as solar cells, light-emitting diodes, lasers, single-photon sources, etc. However, the little knowledge on the underlying photophysics, especially on a microscopic scale, hampers the further improvement of devices based on this material. In this communication, correlated conventional photoluminescence (PL) characterization and wide-field PL imaging as a function of time are employed to investigate the spatially- and temporally-resolved PL in CH3NH3PbI3-xClx perovskite films. Along with a continuous increase of the PL intensity during light soaking, we also observe PL blinking or PL intermittency behavior in individual grains of these films. Combined with significant suppression of PL blinking in perovskite films coated with a phenyl-C61-butyric acid methyl ester (PCBM) layer, it suggests that this PL intermittency is attributed to Auger recombination induced by photoionized defects/traps or mobile ions within grains. These defects/traps are detrimental for light conversion and can be effectively passivated by the PCBM layer. This finding paves the way to provide a guideline on the further improvement of perovskite opto-electronic devices.
Asunto(s)
Compuestos de Calcio/química , Plomo/química , Óxidos/química , Titanio/química , Luz , FotonesRESUMEN
Well-ordered hybrid materials with a 10 nm length scale are highly desired. We make use of the natural length scale (typically 10-15 nm) of the alternating crystalline and amorphous layers that are generally found in semicrystalline polymers to direct the growth of a semiconducting metal oxide. This approach is exemplified with the growth of ZnO within a carboxylic acid end-functionalized poly(3-hexylthiophene) (P3HT-COOH). The metal-oxide precursor vapors diffuse into the amorphous parts of the semicrystalline polymer so that sheets of ZnO up to 0.5 µm in size can be grown. This P3HT-ZnO nanostructure further functions as a donor-acceptor photovoltaic system, with length scales appropriate for charge photogeneration.
RESUMEN
We report the electronic properties of the conjugated coupling between a donor polymer and an acceptor segment serving as a model for the coupling in conjugated donor-acceptor block copolymers. These structures allow the study of possible intrachain photoinduced charge separation, in contrast to the interchain separation achieved in conventional donor-acceptor blends. Depending on the nature of the conjugated linkage, we observe varying degrees of modification of the excited states, including the formation of intrachain charge transfer excitons. The polymers comprise a block (typically 18 repeat units) of P3HT, poly(3-hexyl thiophene), coupled to a single unit of F8-TBT (where F8 is dioctylfluorene, and TBT is thiophene-benzothiadiazole-thiophene). When the P3HT chain is linked to the TBT unit, we observe formation of a localized charge transfer state, with red-shifted absorption and emission. Independent of the excitation energy, this state is formed very rapidly (<40 fs) and efficiently. Because there is only a single TBT unit present, there is little scope for long-range charge separation and it is relatively short-lived, <1 ns. In contrast, when the P3HT chain and TBT unit are separated by the wider bandgap F8 unit, there is little indication for modification of either ground or excited electronic states, and longer-lived charge separated states are observed.
RESUMEN
Identifying structure formation in semicrystalline conjugated polymers is the fundamental basis to understand electronic processes in these materials. Although correlations between physical properties, structure formation, and device parameters of regioregular, semicrystalline poly(3-hexylthiophene) (P3HT) have been established, it has remained difficult to disentangle the influence of regioregularity, polydispersity, and molecular weight. Here we show that the most commonly used synthetic protocol for the synthesis of P3HT, the living Kumada catalyst transfer polycondensation (KCTP) with Ni(dppp)Cl(2) as the catalyst, leads to regioregular chains with one single tail-to-tail (TT) defect distributed over the whole chain, in contrast to the hitherto assumed exclusive location at the chain end. NMR end-group analysis and simulations are used to quantify this effect. A series of entirely defect-free P3HT materials with different molecular weights is synthesized via new, soluble nickel initiators. Data on structure formation in defect-free P3HT, as elucidated by various calorimetric and scattering experiments, allow the development of a simple model for estimating the degree of crystallinity. We find very good agreement for predicted and experimentally determined degrees of crystallinities as high as â¼70%. For Ni(dppp)Cl(2)-initiated chains comprising one distributed TT unit, the comparison of simulated crystallinities with calorimetric and optical measurements strongly suggests incorporation of the TT unit into the crystal lattice, which is accompanied by an increase in backbone torsion. Polydispersity is identified as a major parameter determining crystallinity within the molecular weight range investigated. We believe that the presented approach and results not only contribute to understanding structure formation in P3HT but are generally applicable to other semicrystalline conjugated polymers as well.
RESUMEN
We present a new fully conjugated diblock copolymer, P3HT-b-PFTBTT, containing donor and acceptor blocks with suitably positioned energy levels for use in a solar cell. This is the first block copolymer to be based on an existing high-performance polymer:polymer blend. We observe phase separation of the blocks and self-assembly behavior. In ternary blends with the respective homopolymers the diblock copolymer introduces lateral nanostructure without restricting P3HT crystallization in the charge transport direction, resulting in standing lamellae. By adding the diblock to the homopolymer blend as a compatibilizer, we prevent phase separation at elevated temperatures and benefit from a dramatic increase in P3HT ordering, allowing us to demonstrate polymer blend photovoltaics where the nanostructure is thermodynamically, rather than kinetically, controlled.
Asunto(s)
Suministros de Energía Eléctrica , Nanoestructuras/química , Nanotecnología/instrumentación , Compuestos de Organoselenio/química , Energía Solar , Transporte de Electrón , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Ensayo de Materiales , Nanoestructuras/efectos de la radiación , Compuestos de Organoselenio/efectos de la radiación , Tamaño de la PartículaRESUMEN
One of the key factors for the remarkable improvements of halide perovskite solar cells over the last few years is the increased control over perovskite crystallinity and its thin film morphology. Among various processing methods, solvent vapor-assisted annealing (SVAA) has proven to be promising in achieving high-quality perovskite films. However, a comprehensive understanding of the perovskite crystallization process during SVAA is still lacking. In this work, we use a home-built setup to precisely control the SVAA conditions to investigate in detail the perovskite crystallization kinetics. By changing the solvent vapor concentration during annealing, the perovskite grain size can be tuned from 200 nm to several micrometers. We monitor the crystallization kinetics during solvent-free annealing and SVAA using in situ grazing incidence wide-angle X-ray scattering, where we find a diminished perovskite growth rate and the formation of low dimensional perovskite at the top of the perovskite layer during SVAA. Scanning electron microscopy images of the final films further suggest that the perovskite growth follows an Ostwald ripening process at higher solvent concentrations. Thus, our results will contribute to achieve a more targeted processing of perovskite films.
RESUMEN
Charge carriers' density, their lifetime, mobility, and the existence of trap states are strongly affected by the microscopic morphologies of perovskite films, and have a direct influence on the photovoltaic performance. Here, we report on micro-wrinkled perovskite layers to enhance photocarrier transport performances. By utilizing temperature-dependent miscibility of dimethyl sulfoxide with diethyl ether, the geometry of the microscopic wrinkles of the perovskite films are controlled. Wrinkling is pronounced as temperature of diethyl ether (TDE) decreases due to the compressive stress relaxation of the thin rigid film-capped viscoelastic layer. Time-correlated single-photon counting reveals longer carrier lifetime at the hill sites than at the valley sites. The wrinkled morphology formed at TDE = 5 °C shows higher power conversion efficiency (PCE) and better stability than the flat one formed at TDE = 30 °C. Interfacial and additive engineering improve further PCE to 23.02%. This study provides important insight into correlation between lattice strain and carrier properties in perovskite photovoltaics.
RESUMEN
Interface engineering, especially the realization of Ohmic contacts at the interface between organic semiconductors and metal contacts, is one of the essential preconditions to achieve high-efficiency organic electronic devices. Here, the interface structures of polymer/fullerene blends are correlated with the charge extraction/injection properties of working organic solar cells. The model system-poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM)-is fabricated using two different degrees of P3HT regioregularity to alter the blend interchain order and molecular packing, resulting in different device performances. Investigations by electroabsorption spectroscopy on these devices indicate a significant reduction (≈1 V) in the built-in potential with an increase in the P3HT regioregularity. This observation is also supported by a change in the work function (WF) of high regioregular polymer blends from photoelectron spectroscopy measurements. These results confirm the presence of a strong dipole layer acting as a δ-hole-transporting layer at the polymer/MoO3/Ag electrode interface. Unipolar hole-only devices show an increase in the magnitude of the hole current in high regioregular P3HT devices, suggesting an increase in the hole injection/extraction efficiency inside the device with a δ-hole-transporting layer. Microscopically, near-edge X-ray absorption fine structure spectroscopy was conducted to probe the surface microstructure in these blends, finding a highly edge-on orientation of P3HT chains in blends made with high regioregular P3HT. This edge-on orientation of P3HT chains at the interface results in a layer of oriented alkyl side chains capping the surface, which favors the formation of a dipole layer at the polymer/MoO3 interface. The increase in the charge extraction efficiency due to the formation of a δ-hole-transporting layer thus results in higher short circuit currents and fill factor values, eventually increasing the device efficiency in high regioregular P3HT devices despite a slight decrease in cell open circuit voltage. These findings emphasize the significance of WF control as a tool for improved device performance and pave the way toward interfacial optimization based on the modulation of fundamental polymer properties, such as polymer regioregularity.
RESUMEN
Indacenodithiophene (IDT) is a promising building block for designing organic semiconductors. In this work, a new pentacyclic ladder-type arene IDMe was designed and synthesized by introducing methyl substitution on the short-axis of IDT. Two non-fullerene electron acceptors (IDIC and ID-MeIC) without and with methyl substitution were designed and synthesized for further study. Compared with IDIC, ID-MeIC with methyl substitution on the short-axis of IDT shows smaller bandgap, stronger extinction coefficient, and better crystallinity. Besides, PBDB-T: ID-MeIC blend film shows more efficient exciton generation and dissociation and more balanced charge transport mobility. Therefore, polymer solar cells based on PBDB-T: ID-MeIC can achieve better photovoltaic performance with a PCE of 6.46% and substantial increase in J SC to 14.13 mA cm-2 compared to 4.94% and 9.10 mA cm-2 of PBDB-T: IDIC. These results suggest that short-axis substitution on multi-fused ladder-type arenes, such as IDT is an effective way to change the optical and electronic properties of the organic semiconductors for high-performance OPVs.
RESUMEN
We fabricate two-dimensional Ruddlesden-Popper layered perovskite films by introducing 1-naphthylmethylamine iodide into the precursor, which forms a self-assembled multiple-quantum well (MQW) structure. Enabling outstanding electroluminescence properties, light-emitting diodes (LEDs) using the MQW structure also demonstrate significant improvement in stability in comparison with the stability of devices made from formamidinium lead iodide. To understand this, we perform electroabsorption spectroscopy, wide-field photoluminescence imaging microscopy and impedance spectroscopy. Our approach enables us to determine the mobility of iodide ions in MQW perovskites to be (1.5 ± 0.8) × 10-8 cm2 V-1 s-1, â¼2 orders of magnitude lower than that in three-dimensional perovskites. We highlight that activated ion migration is a requirement for a degradation pathway in which a steady supply of ions is needed to modify the perovskite/external contact interfaces. Therefore, the improvement in stability in a MQW perovskite LED is directly attributed to the suppressed ion migration due to the inserted organic layer acting as a barrier for ionic movement.
RESUMEN
Organometallic compounds as photoactive materials are relatively new in organic solar cells. Upon cyclometalation, the octahedral heteroleptic Ir complex TBzIr exhibits significantly enhanced optical-absorption and improved film-morphology compared to the planar organic 2-(5''-hexyl-[2,2':5',2''-terthiophen]-5-yl)benzo[d]thiazole (TBz) ligand. Thus, a dramatically improved power conversion efficiency (PCE) from â¼0 to 3.81% is attained when combined with PC71BM.
RESUMEN
Understanding self-assembly behavior and resulting morphologies in block co-polymer films is an essential aspect of chemistry and materials science. Although the self-assembly of amorphous coil-coil block co-polymers is relatively well understood, that of semicrystalline block co-polymers where each block has distinct crystallization properties remains unclear. Here, we report a detailed study to elucidate the rich self-assembly behavior of conjugated thiophene-selenophene (P3AT- b-P3AS) block co-polymers. Using a combination of microscopy and synchrotron-based X-ray techniques, we show that three different film morphologies, denoted as lamellae, co-crystallized fibers, and patchy fibers, arise from the self-assembly of these block co-polymers over a relatively narrow range of overall degrees of polymerization (30 < N < 90). Crystallization-driven phase separation occurs at a very low N (<35), and lamellar films are formed. Conversely, at medium N (50-60) and high N (>80), the thiophene and selenophene blocks co-crystallize into nanofibers, where medium N leads to much more mixing than high N. The overall tendency for phase separation in these systems follows rather different trends than phase separation in amorphous polymers in that we observe the greatest degree of phase separation at the lowest N. Finally, we demonstrate how each morphology influences transport properties in organic thin-film transistors comprised of these conjugated polymers.
RESUMEN
We address the behavior in which a bias voltage can be used to switch on and off the photoluminescence of a planar film of methylammonium lead triiodide perovskite (MAPbI3) semiconductor with lateral symmetric electrodes. It is observed that a dark region advances from the positive electrode at a slow velocity of order of 10 µm s-1. Here we explain the existence of the sharp front by a drift of ionic vacancies limited by local saturation, that induce defects and drastically reduce the radiative recombination rate in the film. The model accounts for the time dependence of electrical current due to the ion-induced doping modification, that changes local electron and hole concentration with the drift of vacancies. The analysis of current dependence on time leads to a direct determination of the diffusion coefficient of iodine vacancies and provides detailed information of ionic effects over the electrooptical properties of hybrid perovskite materials.
RESUMEN
Inorganic-organic halide organometal perovskites, such as CH3NH3PbI3 and CsPbI3, etc, have been an unprecedented rising star in the field of photovoltaics since 2009, owing to their exceptionally high power conversion efficiency and simple fabrication processability. Despite its relatively short history of development, intensive investigations have been concentrating on this material; these have ranged from crystal structure analysis and photophysical characterization to performance optimization and device integration, etc. Yet, when applied in photovoltaic devices, this material suffers from hysteresis, that is, the difference of the current-voltage (I-V) curve during sweeping in two directions (from short-circuit towards open-circuit and vice versa). This behavior may significantly impede its large-scale commercial application. This Review will focus on the recent theoretical and experimental efforts to reveal the origin and mechanism of hysteresis. The proposed origins include (1) ferroelectric polarization, (2) charge trapping/detrapping, and (3) ion migration. Among them, recent evidence consistently supports the idea that ion migration plays a key role for the hysteretic behavior in perovskite solar cells (PSCs). Hence, this Review will summarize the recent results on ion migration such as the migrating ion species, activation energy measurement, capacitive characterization, and internal electrical field modulation, etc. In addition, this Review will also present the devices with alleviation/elimination of hysteresis by incorporating either large-size grains or phenyl-C61-butyric acid methyl ester molecules. In a different application, the hysteretic property has been utilized in photovoltaic and memristive switching devices. In sum, by examining these three possible mechanisms, it is concluded that the origin of hysteresis in PSCs is associated with a combination of effects, but mainly limited by ion/defect migration. This strong interaction between ion motion and free charge carrier transport can be modulated by the prevalent crystalline structure, chemical passivation, and an external photo/electrical field.