Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33903248

RESUMEN

Measles virus (MeV) is resurgent and caused >200,000 deaths in 2019. MeV infection can establish a chronic latent infection of the brain that can recrudesce months to years after recovery from the primary infection. Recrudescent MeV leads to fatal subacute sclerosing panencephalitis (SSPE) or measles inclusion body encephalitis (MIBE) as the virus spreads across multiple brain regions. Most clinical isolates of SSPE/MIBE strains show mutations in the fusion (F) gene that result in a hyperfusogenic phenotype in vitro and allow for efficient spread in primary human neurons. Wild-type MeV receptor-binding protein is indispensable for manifesting these mutant F phenotypes, even though neurons lack canonical MeV receptors (CD150/SLAMF1 or nectin-4). How such hyperfusogenic F mutants are selected and whether they confer a fitness advantage for efficient neuronal spread is unresolved. To better understand the fitness landscape that allows for the selection of such hyperfusogenic F mutants, we conducted a screen of ≥3.1 × 105 MeV-F point mutants in their genomic context. We rescued and amplified our genomic MeV-F mutant libraries in BSR-T7 cells under conditions in which MeV-F-T461I (a known SSPE mutant), but not wild-type MeV, can spread. We recovered known SSPE mutants but also characterized at least 15 hyperfusogenic F mutations with an SSPE phenotype. Structural mapping of these mutants onto the prefusion MeV-F trimer confirm and extend our understanding of the F regulatory domains in MeV-F. Our list of hyperfusogenic F mutants is a valuable resource for future studies into MeV neuropathogenesis and the regulation of paramyxovirus F.


Asunto(s)
Virus del Sarampión/genética , Sarampión/genética , Panencefalitis Esclerosante Subaguda/genética , Proteínas Virales de Fusión/genética , Sustitución de Aminoácidos/genética , Animales , Encéfalo/patología , Encéfalo/virología , Chlorocebus aethiops , Humanos , Sarampión/patología , Sarampión/virología , Virus del Sarampión/patogenicidad , Mutación/genética , Neuronas/patología , Neuronas/virología , Panencefalitis Esclerosante Subaguda/patología , Panencefalitis Esclerosante Subaguda/virología , Células Vero
2.
J Infect Dis ; 223(6): 957-970, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33367897

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions of people globally. Virus infection requires the receptor-binding domain (RBD) of the spike protein. Although studies have demonstrated anti-spike and -RBD antibodies to be protective in animal models, and convalescent plasma as a promising therapeutic option, little is known about immunoglobulin isotypes capable of blocking infection. METHODS: We studied spike- and RBD-specific immunoglobulin isotypes in convalescent and acute plasma/serum samples using a multiplex bead assay. We also determined virus neutralization activities in plasma and serum samples, and purified immunoglobulin fractions using a vesicular stomatitis pseudovirus assay. RESULTS: Spike- and RBD-specific immunoglobulin (Ig) M, IgG1, and IgA1 were produced by all or nearly all subjects at variable levels and detected early after infection. All samples displayed neutralizing activity. Regression analyses revealed that IgM and IgG1 contributed most to neutralization, consistent with IgM and IgG fractions' neutralization potency. IgA also exhibited neutralizing activity, but with lower potency. CONCLUSION: IgG, IgM, and IgA are critical components of convalescent plasma used for treatment of coronavirus disease 2019 (COVID-19).


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , COVID-19/terapia , Inmunoglobulina A/sangre , Inmunoglobulina M/sangre , SARS-CoV-2/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/diagnóstico , Prueba de COVID-19 , Femenino , Humanos , Inmunización Pasiva , Inmunoglobulina A/uso terapéutico , Inmunoglobulina G/sangre , Inmunoglobulina G/uso terapéutico , Isotipos de Inmunoglobulinas/sangre , Isotipos de Inmunoglobulinas/uso terapéutico , Inmunoglobulina M/uso terapéutico , Masculino , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus/inmunología , Sueroterapia para COVID-19
3.
Nucleic Acids Res ; 45(1): 271-287, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-27899653

RESUMEN

Cells and viruses can utilize internal ribosome entry sites (IRES) to drive translation when cap-dependent translation is inhibited by stress or viral factors. IRES trans-acting factors (ITAFs) are known to participate in such cap-independent translation, but there are gaps in the understanding as to how ITAFs, particularly negative ITAFs, regulate IRES-driven translation. This study found that Lys109, Lys121 and Lys122 represent critical ubiquitination sites for far upstream element-binding protein 2 (KHSRP, also known as KH-type splicing regulatory protein or FBP2), a negative ITAF. Mutations at these sites subsequently reduced KHSRP ubiquitination and abolished its inhibitory effect on IRES-driven translation. We further found that interaction between the Kelch domain of Kelch-like protein 12 (KLHL12) and the C-terminal domain of KHSRP contributed to KHSRP ubiquitination, leading to downregulation of enterovirus IRES-mediated translation in infected cells and increased competition against other positive ITAFs. Together, these results show that ubiquitination can exert control over IRES-driven translation via modification of ITAFs, and to the best of our knowledge, this is the first description of such a regulatory mechanism for IRES-dependent translation.


Asunto(s)
Enterovirus/genética , Interacciones Huésped-Patógeno , Proteínas de Microfilamentos/genética , Células Musculares/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Transactivadores/genética , Proteínas Adaptadoras Transductoras de Señales , Línea Celular Tumoral , Enterovirus/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células HEK293 , Humanos , Sitios Internos de Entrada al Ribosoma , Lisina/metabolismo , Proteínas de Microfilamentos/metabolismo , Células Musculares/virología , Mutación , Dominios Proteicos , Proteínas de Unión al ARN/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Ubiquitinación
4.
PLoS Pathog ; 12(10): e1005959, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27780225

RESUMEN

The 5' untranslated region (5' UTR) of the enterovirus 71 (EV71) RNA genome contains an internal ribosome entry site (IRES) that is indispensable for viral protein translation. Due to the limited coding capacity of their RNA genomes, EV71 and other picornaviruses typically recruit host factors, known as IRES trans-acting factors (ITAFs), to mediate IRES-dependent translation. Here, we show that EV71 viral proteinase 2A is capable of cleaving far upstream element-binding protein 1 (FBP1), a positive ITAF that directly binds to the EV71 5' UTR linker region to promote viral IRES-driven translation. The cleavage occurs at the Gly-371 residue of FBP1 during the EV71 infection process, and this generates a functional cleavage product, FBP11-371. Interestingly, the cleavage product acts to promote viral IRES activity. Footprinting analysis and gel mobility shift assay results showed that FBP11-371 similarly binds to the EV71 5' UTR linker region, but at a different site from full-length FBP1; moreover, FBP1 and FBP11-371 were found to act additively to promote IRES-mediated translation and virus yield. Our findings expand the current understanding of virus-host interactions with regard to viral recruitment and modulation of ITAFs, and provide new insights into translational control during viral infection.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Enterovirus Humano A , Regulación Viral de la Expresión Génica/fisiología , Interacciones Huésped-Parásitos/fisiología , Sitios Internos de Entrada al Ribosoma/fisiología , Proteínas Virales/metabolismo , Regiones no Traducidas 5'/fisiología , Línea Celular Tumoral , Ensayo de Cambio de Movilidad Electroforética , Humanos , Immunoblotting , Inmunoprecipitación , Sitios Internos de Entrada al Ribosoma/genética , Biosíntesis de Proteínas/fisiología , Proteínas de Unión al ARN
5.
Nucleic Acids Res ; 42(20): 12789-805, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25352551

RESUMEN

The roles of virus-derived small RNAs (vsRNAs) have been studied in plants and insects. However, the generation and function of small RNAs from cytoplasmic RNA viruses in mammalian cells remain unexplored. This study describes four vsRNAs that were detected in enterovirus 71-infected cells using next-generation sequencing and northern blots. Viral infection produced substantial levels (>10(5) copy numbers per cell) of vsRNA1, one of the four vsRNAs. We also demonstrated that Dicer is involved in vsRNA1 generation in infected cells. vsRNA1 overexpression inhibited viral translation and internal ribosomal entry site (IRES) activity in infected cells. Conversely, blocking vsRNA1 enhanced viral yield and viral protein synthesis. We also present evidence that vsRNA1 targets stem-loop II of the viral 5' untranslated region and inhibits the activity of the IRES through this sequence-specific targeting. Our study demonstrates the ability of a cytoplasmic RNA virus to generate functional vsRNA in mammalian cells. In addition, we also demonstrate a potential novel mechanism for a positive-stranded RNA virus to regulate viral translation: generating a vsRNA that targets the IRES.


Asunto(s)
Regiones no Traducidas 5' , Enterovirus Humano A/genética , Regulación Viral de la Expresión Génica , Biosíntesis de Proteínas , ARN Pequeño no Traducido/metabolismo , ARN Viral/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Humanos , Ribonucleasa III/metabolismo , Proteínas Virales/biosíntesis
6.
bioRxiv ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39282446

RESUMEN

Coronavirus (CoV) Nsp15 is a viral endoribonuclease (EndoU) with a preference for uridine residues. CoV Nsp15 is an innate immune antagonist which prevents dsRNA sensor recognition and stress granule formation by targeting viral and host RNAs. SARS-CoV-2 restricts and delays the host antiviral innate immune responses through multiple viral proteins, but the role of SARS-CoV-2 Nsp15 in innate immune evasion is not completely understood. Here, we generate an EndoU activity knockout rSARS-CoV-2Nsp15-H234A to elucidate the biological functions of Nsp15. Relative to wild-type rSARS-CoV-2, replication of rSARS-CoV-2Nsp15-H234A was significantly decreased in IFN-responsive A549-ACE2 cells but not in its STAT1 knockout counterpart. Transcriptomic analysis revealed upregulation of innate immune response genes in cells infected with rSARS-CoV-2Nsp15-H234A relative to wild-type virus, including cGAS-STING, cytosolic DNA sensors activated by both DNA and RNA viruses. Treatment with STING inhibitors H-151 and SN-011 rescued the attenuated phenotype of rSARS-CoV-2Nsp15-H234A. SARS-CoV-2 Nsp15 inhibited cGAS-STING-mediated IFN-ß promoter and NF-κB reporter activity, as well as facilitated the replication of EV-D68 and NDV by diminishing cGAS and STING expression and downstream innate immune responses. Notably, the decline in cGAS and STING was also apparent during SARS-CoV-2 infection. The EndoU activity was essential for SARS-CoV-2 Nsp15-mediated cGAS and STING downregulation, but not all HCoV Nsp15 share the consistent substrate selectivity. In the hamster model, rSARS-CoV-2Nsp15-H234A replicated to lower titers in the nasal turbinates and lungs and induced higher innate immune responses. Collectively, our findings exhibit that SARS-CoV-2 Nsp15 serves as a host innate immune antagonist by targeting host cGAS and STING.

7.
mBio ; 15(1): e0247723, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38054729

RESUMEN

IMPORTANCE: The COVID-19 pandemic remains a significant public health concern for the global population; the development and characterization of therapeutics, especially ones that are broadly effective, will continue to be essential as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) variants emerge. Neutralizing monoclonal antibodies remain an effective therapeutic strategy to prevent virus infection and spread so long as they recognize and interact with circulating variants. The epitope and binding specificity of a neutralizing anti-SARS-CoV-2 Spike receptor-binding domain antibody clone against many SARS-CoV-2 variants of concern were characterized by generating antibody-resistant virions coupled with cryo-EM structural analysis and VSV-spike neutralization studies. This workflow can serve to predict the efficacy of antibody therapeutics against emerging variants and inform the design of therapeutics and vaccines.


Asunto(s)
COVID-19 , Pandemias , Humanos , Epítopos , Pandemias/prevención & control , SARS-CoV-2 , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus/genética
8.
bioRxiv ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39282406

RESUMEN

Viruses have evolved myriad strategies to exploit the translation machinery of host cells to potentiate their replication. However, how paramyxovirus (PMVs) modulate cellular translation for their own benefit has not been systematically examined. Utilizing puromycylation labeling, overexpression of individual viral genes, and infection with wild-type virus versus its gene-deleted counterpart, we found that PMVs significantly inhibit host cells' nascent peptide synthesis during infection, with the viral matrix being the primary contributor to this effect. Using the rNiV-NPL replicon system, we discovered that the viral matrix enhances viral protein translation without affecting viral mRNA transcription and suppresses host protein expression at the translational level. Polysome profile analysis revealed that the HPIV3 matrix promotes the association of viral mRNAs with ribosomes, thereby enhancing their translation efficiency during infection. Intriguingly, our NiV-Matrix interactome identified the core exon-junction complex (cEJC), critical for mRNA biogenesis, as a significant component that interacts with the paramyxoviral matrix predominantly in the cytoplasm. siRNA knockdown of eIF4AIII simulated the restriction of cellular functions by the viral matrix, leading to enhanced viral gene translation and a reduction in host protein synthesis. Moreover, siRNA depletion of cEJC resulted in a 2-3 log enhancement in infectious virus titer for various PMVs but not SARS-CoV-2, enterovirus D68, or influenza virus. Our findings characterize a host translational interference mechanism mediated by viral matrix and host cEJC interactions. We propose that the PMV matrix redirects ribosomes to translate viral mRNAs at the expense of host cell transcripts, enhancing viral replication, and thereby enhancing viral replication. These insights provide a deeper understanding of the molecular interactions between paramyxoviruses and host cells, highlighting potential targets for antiviral strategies.

9.
bioRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585716

RESUMEN

Immunoglobulin (IGH, IGK, IGL) loci in the human genome are highly polymorphic regions that encode the building blocks of the light and heavy chain IG proteins that dimerize to form antibodies. The processes of V(D)J recombination and somatic hypermutation in B cells are responsible for creating an enormous reservoir of highly specific antibodies capable of binding a vast array of possible antigens. However, the antibody repertoire is fundamentally limited by the set of variable (V), diversity (D), and joining (J) alleles present in the germline IG loci. To better understand how the germline IG haplotypes contribute to the expressed antibody repertoire, we combined genome sequencing of the germline IG loci with single-cell transcriptome sequencing of B cells from the same donor. Sequencing and assembly of the germline IG loci captured the IGH locus in a single fully-phased contig where the maternal and paternal contributions to the germline V, D, and J repertoire can be fully resolved. The B cells were collected following a measles, mumps, and rubella (MMR) vaccination, resulting in a population of cells that were activated in response to this specific immune challenge. Single-cell, full-length transcriptome sequencing of these B cells resulted in whole transcriptome characterization of each cell, as well as highly-accurate consensus sequences for the somatically rearranged and hypermutated light and heavy chain IG transcripts. A subset of antibodies synthesized based on their consensus heavy and light chain transcript sequences demonstrated binding to measles antigens and neutralization of measles live virus.

10.
Nucleic Acids Res ; 39(22): 9633-48, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21880596

RESUMEN

Enterovirus 71 (EV71) is associated with severe neurological disorders in children, and has been implicated as the infectious agent in several large-scale outbreaks with mortalities. Upon infection, the viral RNA is translated in a cap-independent manner to yield a large polyprotein precursor. This mechanism relies on the presence of an internal ribosome entry site (IRES) element within the 5'-untranslated region. Virus-host interactions in EV71-infected cells are crucial in assisting this process. We identified a novel positive IRES trans-acting factor, far upstream element binding protein 1 (FBP1). Using binding assays, we mapped the RNA determinants within the EV71 IRES responsible for FBP1 binding and mapped the protein domains involved in this interaction. We also demonstrated that during EV71 infection, the nuclear protein FBP1 is enriched in cytoplasm where viral replication occurs. Moreover, we showed that FBP1 acts as a positive regulator of EV71 replication by competing with negative ITAF for EV71 IRES binding. These new findings may provide a route to new anti-viral therapy.


Asunto(s)
Regiones no Traducidas 5' , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Enterovirus Humano A/genética , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Animales , Unión Competitiva , Línea Celular , Citoplasma/metabolismo , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/química , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/química , Enterovirus Humano A/crecimiento & desarrollo , Enterovirus Humano A/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Dominios y Motivos de Interacción de Proteínas , ARN Viral/química , ARN Viral/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/química , Transactivadores/metabolismo , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA