Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Virol J ; 21(1): 57, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448981

RESUMEN

BACKGROUND: Non-pharmaceutical interventions implemented during the COVID-19 pandemic resulted in a marked reduction in influenza infections globally. The absence of influenza has raised concerns of waning immunity, and potentially more severe influenza seasons after the pandemic. METHODS: To evaluate immunity towards influenza post-COVID-19 pandemic we have assessed influenza A epidemics in Norway from October 2016 to June 2023 and measured antibodies against circulating strains of influenza A(H1N1)pdm09 and A(H3N2) in different age groups by hemagglutination inhibition (HAI) assays in a total of 3364 serum samples collected in 2019, 2021, 2022 and 2023. RESULTS: Influenza epidemics in Norway from October 2016 until June 2023 were predominately influenza As, with a mixture of A(H1N1)pdm09 and A(H3N2) subtype predominance. We did not observe higher numbers of infections during the influenza epidemics following the COVID-19 pandemic than in pre-COVID-19 seasons. Frequencies of protective HAI titers against A(H1N1)pdm09 and A(H3N2) viruses were reduced in sera collected in 2021 and 2022, compared to sera collected in 2019. The reduction could, however, largely be explained by antigenic drift of new virus strains, as protective HAI titers remained stable against the same strain from one season to the next. However, we observed the development of an immunity gap in the youngest children during the pandemic which resulted in a prominent reduction in HAI titers against A(H1N1)pdm09 in 2021 and 2022. The immunity gap was partially closed in sera collected in 2023 following the A(H1N1)pdm09-dominated influenza seasons of 2022/2023. During the 2022/2023 epidemic, drift variants of A(H1N1)pdm09 belonging to the 5a.2a.1 clade emerged, and pre-season HAI titers were significantly lower against this clade compared to the ancestral 5a.2 clade. CONCLUSION: The observed reduction in protective antibodies against A(H1N1)pdm09 and A(H3N2) viruses post COVID-19 is best explained by antigenic drift of emerging viruses, and not waning of antibody responses in the general population. However, the absence of influenza during the pandemic resulted in an immunity gap in the youngest children. While this immunity gap was partially closed following the 2022/2023 influenza season, children with elevated risk of severe infection should be prioritized for vaccination.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Niño , Humanos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Estudios Transversales , Deriva y Cambio Antigénico , Subtipo H3N2 del Virus de la Influenza A , COVID-19/epidemiología , Pandemias
2.
BMC Infect Dis ; 24(1): 841, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164637

RESUMEN

BACKGROUND: According to Norwegian registries, 91% of individuals ≥ 16 years had received ≥ 1 dose of COVID-19 vaccine by mid-July 2022, whereas less than 2% of children < 12 years were vaccinated. Confirmed COVID-19 was reported for 27% of the population, but relaxation of testing lead to substantial underreporting. We have characterized the humoral immunity to SARS-CoV-2 in Norway in the late summer of 2022 by estimating the seroprevalence and identifying antibody profiles based on reactivity to Wuhan or Omicron-like viruses in a nationwide cross-sectional collection of residual sera, and validated our findings using cohort sera. METHODS: 1,914 anonymized convenience sera and 243 NorFlu-cohort sera previously collected from the Oslo-area with reported infection and vaccination status were analyzed for antibodies against spike, the receptor-binding domain (RBD) of the ancestral Wuhan strain and Omicron BA.2 RBD, and nucleocapsid (N). Samples were also tested for antibodies inhibiting RBD-ACE2 interaction. Neutralization assays were performed on subsets of residual sera against B.1, BA.2, XBB.1.5 and BQ.1.1. RESULTS: The national seroprevalence estimate from vaccination and/or infection was 99.1% (95% CrI 97.0-100.0%) based on Wuhan (spike_W and RBD_W) and RBD_BA2 antibodies. Sera from children < 12 years had 2.2 times higher levels of antibodies against RBD_BA2 than RBD_W and their seroprevalence estimate showed a 14.4 percentage points increase when also including anti-RBD_BA2 antibodies compared to Wuhan-antibodies alone. 50.3% (95% CI 45.0-55.5%) of residual sera from children and 38.1% (95% CI 36.0-40.4%) of all residual sera were positive for anti-N-antibodies. By combining measurements of binding- and ACE2-RBD-interaction-inhibiting antibodies, reactivity profiles indicative of infection and vaccination history were identified and validated using cohort sera. Residual sera with a profile indicative of hybrid immunity were able to neutralize newer Omicron variants XBB.1.5 and BQ.1.1. CONCLUSIONS: By late summer of 2022, most of the Norwegian population had antibodies to SARS-CoV-2, and almost all children had been infected. Antibody profiles indicated that children mostly had experienced a primary Omicron infection, while hybrid immunity was common among adults. The finding that sera displaying hybrid immunity could neutralize newer Omicron variants indicates that Wuhan-like priming of the immune response did not have a harmful imprinting effect and that infections induce cross-reacting antibodies against future variants.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/inmunología , Anticuerpos Antivirales/sangre , SARS-CoV-2/inmunología , Noruega/epidemiología , Estudios Seroepidemiológicos , Niño , Adulto , Adolescente , Persona de Mediana Edad , Masculino , Preescolar , Femenino , Adulto Joven , Vacunas contra la COVID-19/inmunología , Anciano , Lactante , Estudios Transversales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
3.
BMC Public Health ; 24(1): 181, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225588

RESUMEN

BACKGROUND: SARS-CoV-2 reinfection rates have been shown to vary depending on the circulating variant, vaccination status and background immunity, as well as the time interval used to identify reinfections. This study describes the frequency of SARS-CoV-2 reinfections in Norway using different time intervals and assesses potential factors that could impact the risk of reinfections during the different variant waves. METHODS: We used linked individual-level data from national registries to conduct a retrospective cohort study including all cases with a positive test for SARS-CoV-2 from February 2020 to January 2022. Time intervals of 30, 60, 90 or 180 days between positive tests were used to define potential reinfections. A multivariable Cox regression model was used to assess the risk of reinfection in terms of variants adjusting for vaccination status, demographic factors, and underlying comorbidities. RESULTS: The reinfection rate varied between 0.2%, 0.6% and 5.9% during the Alpha, Delta and early Omicron waves, respectively. In the multivariable model, younger age groups were associated with a higher risk of reinfection compared to older age groups, whereas vaccination was associated with protection against reinfection. Moreover, the risk of reinfection followed a pattern similar to risk of first infection. Individuals infected early in the pandemic had higher risk of reinfection than individuals infected in more recent waves. CONCLUSIONS: Reinfections increased markedly during the Omicron wave. Younger individuals, and primary infections during earlier waves were associated with an increased reinfection risk compared to primary infections during more recent waves, whereas vaccination was a protective factor. Our results highlight the importance of age and post infection waning immunity and are relevant when evaluating vaccination polices.


Asunto(s)
COVID-19 , Reinfección , Humanos , Anciano , Reinfección/epidemiología , SARS-CoV-2 , Estudios Retrospectivos , COVID-19/epidemiología , COVID-19/prevención & control , Noruega/epidemiología
5.
Influenza Other Respir Viruses ; 18(5): e13307, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38798072

RESUMEN

BACKGROUND: Seroepidemiological studies provide estimates of population-level immunity, prevalence/incidence of infections, and evaluation of vaccination programs. We assessed the seroprevalence of protective antibodies against influenza and evaluated the correlation of seroprevalence with the cumulative annual influenza incidence rate. METHODS: We conducted an annual repeated cross-sectional seroepidemiological survey, during June-August, from 2014 to 2019, in Portugal. A total of 4326 sera from all age groups, sex, and regions was tested by hemagglutination inhibition assay. Seroprevalence and geometric mean titers (GMT) of protective antibodies against influenza were assessed by age group, sex, and vaccine status (65+ years old). The association between summer annual seroprevalence and the difference of influenza incidence rates between one season and the previous one was measured by Pearson correlation coefficient (r). RESULTS: Significant differences in seroprevalence of protective antibodies against influenza were observed in the population. Higher seroprevalence and GMT for A(H1N1)pdm09 and A(H3N2) were observed in children (5-14); influenza B seroprevalence in adults 65+ was 1.6-4.4 times than in children (0-4). Vaccinated participants (65+) showed significant higher seroprevalence/GMT for influenza. A strong negative and significant correlation was found between seroprevalence and ILI incidence rate for A(H1N1)pdm09 in children between 5 and 14 (r = -0.84; 95% CI, -0.98 to -0.07); a weak negative correlation was observed for A(H3N2) and B/Yamagata (r ≤ -0.1). CONCLUSIONS: The study provides new insight into the anti-influenza antibodies seroprevalence measured in summer on the ILI incidence rate in the next season and the need for adjusted preventive health care measures to prevent influenza infection and transmission.


Asunto(s)
Anticuerpos Antivirales , Gripe Humana , Humanos , Estudios Seroepidemiológicos , Estudios Transversales , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Gripe Humana/inmunología , Femenino , Masculino , Adulto , Incidencia , Anticuerpos Antivirales/sangre , Preescolar , Niño , Persona de Mediana Edad , Adolescente , Adulto Joven , Anciano , Portugal/epidemiología , Lactante , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Pruebas de Inhibición de Hemaglutinación , Virus de la Influenza B/inmunología , Estaciones del Año , Recién Nacido , Anciano de 80 o más Años
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA