Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Brief Bioinform ; 20(5): 1812-1825, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-29939204

RESUMEN

Long non-coding RNAs (lncRNAs) have been revealed to play essential roles in the human cardiovascular system. However, information about their mechanisms is limited, and a comprehensive view of cardiac lncRNAs is lacking from a multiple tissues perspective to date. Here, the landscape of the lncRNA transcriptome in human heart was summarized. We summarized all lncRNA transcripts from publicly available human transcriptome resources (156 heart samples and 210 samples from 29 other tissues) and systematically analysed all annotated and novel lncRNAs expressed in heart. A total of 7485 lncRNAs whose expression was elevated in heart (HE lncRNAs) and 453 lncRNAs expressed in all 30 analysed tissues (EIA lncRNAs) were extracted. Using various bioinformatics resources, methods and tools, the features of these lncRNAs were discussed from various perspectives, including genomic structure, conservation, dynamic variation during heart development, cis-regulation, differential expression in cardiovascular diseases and cancers as well as regulation at transcriptional and post-transcriptional levels. Afterwards, all the features discussed above were integrated into a user-friendly resource named CARDIO-LNCRNAS (http://bio-bigdata.hrbmu.edu.cn/CARDIO-LNCRNAS/ or http://www.bio-bigdata.net/CARDIO-LNCRNAS/). This study represents the first global view of lncRNAs in the human cardiovascular system based on multiple tissues and sheds light on the role of lncRNAs in developments and heart disorders.


Asunto(s)
Miocardio/metabolismo , ARN Largo no Codificante/genética , Transcriptoma , Humanos
2.
Brief Bioinform ; 20(1): 66-76, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28968629

RESUMEN

Cardiovascular diseases (CVDs) continue to be a major cause of morbidity and mortality, and non-coding RNAs (ncRNAs) play critical roles in CVDs. With the recent emergence of high-throughput technologies, including small RNA sequencing, investigations of CVDs have been transformed from candidate-based studies into genome-wide undertakings, and a number of ncRNAs in CVDs were discovered in various studies. A comprehensive review of these ncRNAs would be highly valuable for researchers to get a complete picture of the ncRNAs in CVD. To address these knowledge gaps and clinical needs, in this review, we first discussed dysregulated ncRNAs and their critical roles in cardiovascular development and related diseases. Moreover, we reviewed >28 561 published papers and documented the ncRNA-CVD association benchmarking data sets to summarize the principles of ncRNA regulation in CVDs. This data set included 13 249 curated relationships between 9503 ncRNAs and 139 CVDs in 12 species. Based on this comprehensive resource, we summarized the regulatory principles of dysregulated ncRNAs in CVDs, including the complex associations between ncRNA and CVDs, tissue specificity and ncRNA synergistic regulation. The highlighted principles are that CVD microRNAs (miRNAs) are highly expressed in heart tissue and that they play central roles in miRNA-miRNA functional synergistic network. In addition, CVD-related miRNAs are close to one another in the functional network, indicating the modular characteristic features of CVD miRNAs. We believe that the regulatory principles summarized here will further contribute to our understanding of ncRNA function and dysregulation mechanisms in CVDs.


Asunto(s)
Enfermedades Cardiovasculares/genética , ARN no Traducido/genética , Animales , Macrodatos , Biología Computacional , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Perfilación de la Expresión Génica/estadística & datos numéricos , Estudios de Asociación Genética/estadística & datos numéricos , Marcadores Genéticos , Humanos , Ratones , MicroARNs/genética , Distribución Tisular
3.
BMC Cancer ; 20(1): 740, 2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32770988

RESUMEN

BACKGROUND: Precision oncology pharmacotherapy relies on precise patient-specific alterations that impact drug responses. Due to rapid advances in clinical tumor sequencing, an urgent need exists for a clinical support tool that automatically interprets sequencing results based on a structured knowledge base of alteration events associated with clinical implications. RESULTS: Here, we introduced the Oncology Pharmacotherapy Decision Support System (OncoPDSS), a web server that systematically annotates the effects of alterations on drug responses. The platform integrates actionable evidence from several well-known resources, distills drug indications from anti-cancer drug labels, and extracts cancer clinical trial data from the ClinicalTrials.gov database. A therapy-centric classification strategy was used to identify potentially effective and non-effective pharmacotherapies from user-uploaded alterations of multi-omics based on integrative evidence. For each potentially effective therapy, clinical trials with faculty information were listed to help patients and their health care providers find the most suitable one. CONCLUSIONS: OncoPDSS can serve as both an integrative knowledge base on cancer precision medicine, as well as a clinical decision support system for cancer researchers and clinical oncologists. It receives multi-omics alterations as input and interprets them into pharmacotherapy-centered information, thus helping clinicians to make clinical pharmacotherapy decisions. The OncoPDSS web server is freely accessible at https://oncopdss.capitalbiobigdata.com .


Asunto(s)
Bases de Datos Factuales , Sistemas de Apoyo a Decisiones Clínicas , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Medicina de Precisión , Navegador Web , Antineoplásicos/uso terapéutico , Ensayos Clínicos como Asunto , Humanos , Anotación de Secuencia Molecular , Interfaz Usuario-Computador
4.
Adv Exp Med Biol ; 1094: 97-108, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30191491

RESUMEN

Competing endogenous RNAs (ceRNAs) are kinds of RNAs that regulate each other at post-transcription level through competing for miRNA regulators. CeRNA-ceRNA networks provide another type of function for protein-coding mRNAs, which link non-coding RNAs such as miRNA, long non-coding RNA, pseudogenes and circular RNAs. In this chapter, we will introduce the definition of ceRNAs, mainly provide the computational method to predict ceRNA interactions in general condition and complex diseases. In addition, we also illustrated several computational methods that are commonly used to identify the perturbed ceRNA networks in human diseases compared to normal conditions. Finally, we also summarized the principles of methods that integrated ceRNA theory to identify human disease biomarkers. Understanding of RNA-RNA crosstalk will provide significant insights into gene regulatory network that has been implicated in human development and/or diseases.


Asunto(s)
Redes Reguladoras de Genes , MicroARNs/genética , ARN Largo no Codificante/genética , ARN/genética , Enfermedad/genética , Humanos , Seudogenes , ARN Circular , ARN Mensajero/genética
5.
EBioMedicine ; 24: 137-146, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29037607

RESUMEN

Advances in developmental cardiology have increased our understanding of the early aspects of heart differentiation. However, understanding noncoding RNA (ncRNA) transcription and regulation during this process remains elusive. Here, we constructed transcriptomes for both long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in four important developmental stages ranging from early embryonic to cardiomyocyte based on high-throughput sequencing datasets, which indicate the high stage-specific expression patterns of two ncRNA types. Additionally, higher similarities of samples within each stage were found, highlighting the divergence of samples collected from distinct cardiac developmental stages. Next, we developed a method to identify numerous lncRNA and circRNA regulators whose expression was significantly stage-specific and shifted gradually and continuously during heart differentiation. We inferred that these ncRNAs are important for the stages of cardiac differentiation. Moreover, transcriptional regulation analysis revealed that the expression of stage-specific lncRNAs is controlled by known key stage-specific transcription factors (TFs). In addition, circRNAs exhibited dynamic expression patterns independent from their host genes. Functional enrichment analysis revealed that lncRNAs and circRNAs play critical roles in pathways that are activated specifically during heart differentiation. We further identified candidate TF-ncRNA-gene network modules for each differentiation stage, suggesting the dynamic organization of lncRNAs and circRNAs collectively controlled cardiac differentiation, which may cause heart-related diseases when defective. Our study provides a foundation for understanding the dynamic regulation of ncRNA transcriptomes during heart differentiation and identifies the dynamic organization of novel key lncRNAs and circRNAs to collectively control cardiac differentiation.


Asunto(s)
Miocitos Cardíacos/citología , ARN Largo no Codificante/genética , ARN/genética , Factores de Transcripción/genética , Diferenciación Celular , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Corazón/crecimiento & desarrollo , Humanos , Miocitos Cardíacos/química , ARN Circular , Análisis de Secuencia de ARN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA