Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Stem Cells ; 40(5): 479-492, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35445270

RESUMEN

Late lung development is a period of alveolar and microvascular formation, which is pivotal in ensuring sufficient and effective gas exchange. Defects in late lung development manifest in premature infants as a chronic lung disease named bronchopulmonary dysplasia (BPD). Numerous studies demonstrated the therapeutic properties of exogenous bone marrow and umbilical cord-derived mesenchymal stromal cells (MSCs) in experimental BPD. However, very little is known regarding the regenerative capacity of resident lung MSCs (L-MSCs) during normal development and in BPD. In this study we aimed to characterize the L-MSC population in homeostasis and upon injury. We used single-cell RNA sequencing (scRNA-seq) to profile in situ Ly6a+ L-MSCs in the lungs of normal and O2-exposed neonatal mice (a well-established model to mimic BPD) at 3 developmental timepoints (postnatal days 3, 7, and 14). Hyperoxia exposure increased the number and altered the expression profile of L-MSCs, particularly by increasing the expression of multiple pro-inflammatory, pro-fibrotic, and anti-angiogenic genes. In order to identify potential changes induced in the L-MSCs transcriptome by storage and culture, we profiled 15 000 Ly6a+ L-MSCs after in vitro culture. We observed great differences in expression profiles of in situ and cultured L-MSCs, particularly those derived from healthy lungs. Additionally, we have identified the location of Ly6a+/Col14a1+ L-MSCs in the developing lung and propose Serpinf1 as a novel, culture-stable marker of L-MSCs. Finally, cell communication analysis suggests inflammatory signals from immune and endothelial cells as main drivers of hyperoxia-induced changes in L-MSCs transcriptome.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Células Madre Mesenquimatosas , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/terapia , Células Endoteliales , Humanos , Hiperoxia/genética , Hiperoxia/metabolismo , Recién Nacido , Pulmón/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Análisis de Secuencia de ARN
2.
Am J Respir Crit Care Med ; 205(10): 1186-1201, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35286238

RESUMEN

Rationale: Bronchopulmonary dysplasia, a chronic respiratory condition originating from preterm birth, is associated with abnormal neurodevelopment. Currently, there is an absence of effective therapies for bronchopulmonary dysplasia and its associated brain injury. In preclinical trials, mesenchymal stromal cell therapies demonstrate promise as a therapeutic alternative for bronchopulmonary dysplasia. Objectives: To investigate whether a multifactorial neonatal mouse model of lung injury perturbs neural progenitor cell function and to assess the ability of human umbilical cord-derived mesenchymal stromal cell extracellular vesicles to mitigate pulmonary and neurologic injury. Methods: Mice at Postnatal Day 7 or 8 were injected intraperitoneally with LPS and ventilated with 40% oxygen at Postnatal Day 9 or 10 for 8 hours. Treated animals received umbilical cord-mesenchymal stromal cell-derived extracellular vesicles intratracheally preceding ventilation. Lung morphology, vascularity, and inflammation were quantified. Neural progenitor cells were isolated from the subventricular zone and hippocampus and assessed for self-renewal, in vitro differentiation ability, and transcriptional profiles. Measurements and Main Results: The multifactorial lung injury model produced alveolar and vascular rarefaction mimicking bronchopulmonary dysplasia. Neural progenitor cells from lung injury mice showed reduced neurosphere and oligodendrocyte formation, as well as inflammatory transcriptional signatures. Mice treated with mesenchymal stromal cell extracellular vesicles showed significant improvement in lung architecture, vessel formation, and inflammatory modulation. In addition, we observed significantly increased in vitro neurosphere formation and altered neural progenitor cell transcriptional signatures. Conclusions: Our multifactorial lung injury model impairs neural progenitor cell function. Observed pulmonary and neurologic alterations are mitigated by intratracheal treatment with mesenchymal stromal cell-derived extracellular vesicles.


Asunto(s)
Displasia Broncopulmonar , Vesículas Extracelulares , Lesión Pulmonar , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Nacimiento Prematuro , Animales , Displasia Broncopulmonar/terapia , Femenino , Humanos , Recién Nacido , Pulmón , Lesión Pulmonar/terapia , Ratones , Embarazo
3.
Pediatr Res ; 89(4): 803-813, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32434214

RESUMEN

BACKGROUND: Bronchopulmonary dysplasia (BPD), the most common complication of prematurity, arises from various factors that compromise lung development, including oxygen and inflammation. Hyperoxia has been used to mimic the disease in newborn rodents. The use of a second hit to induce systemic inflammation has been suggested as an added strategy to better mimic the inflammatory aspect of BPD. Here we report a novel 2 hit (2HIT) BPD model with in-depth characterization of the innate immune response, enabling mechanistic studies of therapies with an immunomodulatory component. METHODS: C57BL/6N mice were exposed to 85% O2 from postnatal day (P)1 to P7, and received postnatally (P3) Escherichia coli LPS. At various timepoints, immune activation in the lung and at the systemic level was analyzed by fluorescence-activated cell sorting (FACS), and gene and protein expressions. RESULTS: 2HIT mice showed fewer alveoli, increased lung compliance, and right ventricular hypertrophy. A transient proinflammatory cytokine response was observed locally and systemically. Type 2 anti-inflammatory cytokine expression was decreased in the lung together with the number of mature alveolar macrophages. Simultaneously, a Siglec-F intermediate macrophage population emerged. CONCLUSION: This study provides long-term analysis of the 2HIT model, suggesting impairment of type 2 cytokine environment and altered alveolar macrophage profile in the lung. IMPACT: We have developed a novel 2HIT mouse BPD model with postnatal LPS and hyperoxia exposure, which enables mechanistic studies of potential therapeutic strategies with an immunomodulatory component. This is the first report of in-depth characterization of the lung injury and recovery describing the evolution of the innate immune response in a standardized mouse model for experimental BPD with postnatal LPS and hyperoxia exposure. The 2HIT model has the potential to help understand the link between inflammation and impaired lung development, and will enable testing of new therapies in a short and more robust manner.


Asunto(s)
Displasia Broncopulmonar/inmunología , Inmunidad Innata , Inflamación/inmunología , Oxígeno/metabolismo , Animales , Peso Corporal , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Hiperoxia , Lipopolisacáridos/metabolismo , Pulmón/efectos de los fármacos , Pulmón/fisiología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL
4.
Semin Fetal Neonatal Med ; 27(1): 101243, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33962890

RESUMEN

Although the lung has extensive regenerative capacity, some diseases affecting the distal lung result in irreversible loss of pulmonary alveoli. Hitherto, treatments are supportive and do not specifically target tissue repair. Regenerative medicine offers prospects to promote lung repair and regeneration. The neonatal lung may be particularly receptive, because of its growth potential, compared to the adult lung. Based on our current understanding of neonatal lung injury, the ideal therapeutic approach includes mitigation of inflammation and fibrosis, and induction of regenerative signals. Cell-based therapies have shown potential to prevent and reverse impaired lung development. Their mechanisms of action suggest effects on both, mitigating the pathophysiological processes and promoting lung growth. Here, we review our current understanding of normal and impaired alveolarization, provide some rationale for the use of cell-based therapies and summarize current evidence for the therapeutic potential of cell-based therapies for pulmonary regeneration in preterm infants.


Asunto(s)
Displasia Broncopulmonar , Displasia Broncopulmonar/etiología , Humanos , Recién Nacido , Recien Nacido Prematuro , Pulmón , Alveolos Pulmonares/fisiología , Regeneración
5.
J Cardiovasc Dev Dis ; 8(12)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34940535

RESUMEN

The median survival of patients with heart transplants is relatively limited, implying one of the most relevant questions in the field-how to expand the lifespan of a heart allograft? Despite optimal transplantation conditions, we do not anticipate a rise in long-term patient survival in near future. In order to develop novel strategies for patient monitoring and specific therapies, it is critical to understand the underlying pathological mechanisms at cellular and molecular levels. These events are driven by innate immune response and allorecognition driven inflammation, which controls both tissue damage and repair in a spatiotemporal context. In addition to immune cells, also structural cells of the heart participate in this process. Novel single cell methods have opened new avenues for understanding the dynamics driving the events leading to allograft failure. Here, we review current knowledge on the cellular composition of a normal heart, and cellular mechanisms of ischemia-reperfusion injury (IRI), acute rejection and cardiac allograft vasculopathy (CAV) in the transplanted hearts. We highlight gaps in current knowledge and suggest future directions, in order to improve cellular and molecular understanding of failing heart allografts.

6.
Nat Commun ; 12(1): 1565, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692365

RESUMEN

During late lung development, alveolar and microvascular development is finalized to enable sufficient gas exchange. Impaired late lung development manifests as bronchopulmonary dysplasia (BPD) in preterm infants. Single-cell RNA sequencing (scRNA-seq) allows for assessment of complex cellular dynamics during biological processes, such as development. Here, we use MULTI-seq to generate scRNA-seq profiles of over 66,000 cells from 36 mice during normal or impaired lung development secondary to hyperoxia with validation of some of the findings in lungs from BPD patients. We observe dynamic populations of cells, including several rare cell types and putative progenitors. Hyperoxia exposure, which mimics the BPD phenotype, alters the composition of all cellular compartments, particularly alveolar epithelium, stromal fibroblasts, capillary endothelium and macrophage populations. Pathway analysis and predicted dynamic cellular crosstalk suggest inflammatory signaling as the main driver of hyperoxia-induced changes. Our data provides a single-cell view of cellular changes associated with late lung development in health and disease.


Asunto(s)
Hiperoxia/genética , Hiperoxia/fisiopatología , Pulmón/metabolismo , Pulmón/patología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patología , Genotipo , Masculino , Ratones
7.
Nat Commun ; 11(1): 3929, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764559

RESUMEN

Surfactant protein B (SP-B) deficiency is an autosomal recessive disorder that impairs surfactant homeostasis and manifests as lethal respiratory distress. A compelling argument exists for gene therapy to treat this disease, as de novo protein synthesis of SP-B in alveolar type 2 epithelial cells is required for proper surfactant production. Here we report a rationally designed adeno-associated virus (AAV) 6 capsid that demonstrates efficiency in lung epithelial cell transduction based on imaging and flow cytometry analysis. Intratracheal administration of this vector delivering murine or human proSFTPB cDNA into SP-B deficient mice restores surfactant homeostasis, prevents lung injury, and improves lung physiology. Untreated SP-B deficient mice develop fatal respiratory distress within two days. Gene therapy results in an improvement in median survival to greater than 200 days. This vector also transduces human lung tissue, demonstrating its potential for clinical translation against this lethal disease.


Asunto(s)
Terapia Genética/métodos , Vectores Genéticos , Parvovirinae/genética , Proteinosis Alveolar Pulmonar/congénito , Proteína B Asociada a Surfactante Pulmonar/deficiencia , Animales , Animales Recién Nacidos , Línea Celular , Dependovirus , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Células HEK293 , Humanos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Transgénicos , Precursores de Proteínas/genética , Proteolípidos/genética , Proteinosis Alveolar Pulmonar/genética , Proteinosis Alveolar Pulmonar/metabolismo , Proteinosis Alveolar Pulmonar/terapia , Proteína B Asociada a Surfactante Pulmonar/genética , Proteína B Asociada a Surfactante Pulmonar/metabolismo , Proteínas Asociadas a Surfactante Pulmonar/genética , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA