Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 627(8002): 204-211, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383787

RESUMEN

Targeted protein degradation is a pharmacological modality that is based on the induced proximity of an E3 ubiquitin ligase and a target protein to promote target ubiquitination and proteasomal degradation. This has been achieved either via proteolysis-targeting chimeras (PROTACs)-bifunctional compounds composed of two separate moieties that individually bind the target and E3 ligase, or via molecular glues that monovalently bind either the ligase or the target1-4. Here, using orthogonal genetic screening, biophysical characterization and structural reconstitution, we investigate the mechanism of action of bifunctional degraders of BRD2 and BRD4, termed intramolecular bivalent glues (IBGs), and find that instead of connecting target and ligase in trans as PROTACs do, they simultaneously engage and connect two adjacent domains of the target protein in cis. This conformational change 'glues' BRD4 to the E3 ligases DCAF11 or DCAF16, leveraging intrinsic target-ligase affinities that do not translate to BRD4 degradation in the absence of compound. Structural insights into the ternary BRD4-IBG1-DCAF16 complex guided the rational design of improved degraders of low picomolar potency. We thus introduce a new modality in targeted protein degradation, which works by bridging protein domains in cis to enhance surface complementarity with E3 ligases for productive ubiquitination and degradation.


Asunto(s)
Diseño de Fármacos , Proteolisis , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas , Ubiquitinación , Proteínas que Contienen Bromodominio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Quimera Dirigida a la Proteólisis , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Unión Proteica , Dominios Proteicos
2.
Annu Rev Biochem ; 81: 291-322, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22482907

RESUMEN

Ubiquitin acts as a versatile cellular signal that controls a wide range of biological processes including protein degradation, DNA repair, endocytosis, autophagy, transcription, immunity, and inflammation. The specificity of ubiquitin signaling is achieved by alternative conjugation signals (monoubiquitin and ubiquitin chains) and interactions with ubiquitin-binding proteins (known as ubiquitin receptors) that decode ubiquitinated target signals into biochemical cascades in the cell. Herein, we review the current knowledge pertaining to the structural and functional features of ubiquitin-binding proteins and the mechanisms by which they recognize various types of ubiquitin topologies. The combinatorial use of diverse ubiquitin-binding domains (UBDs) in full-length proteins, selective recognition of chains with distinct linkages and length, and posttranslational modifications of ubiquitin receptors or multivalent interactions within protein complexes illustrate a few mechanisms by which a circuitry of signaling networks can be rewired by ubiquitin-binding proteins to control cellular functions in vivo.


Asunto(s)
Proteínas/metabolismo , Ubiquitina/metabolismo , Animales , Fenómenos Fisiológicos Celulares , Humanos , Procesamiento Proteico-Postraduccional , Proteínas/química , Ubiquitina/química
3.
EMBO J ; 42(13): e112799, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37102372

RESUMEN

Selective autophagy of mitochondria, mitophagy, is linked to mitochondrial quality control and as such is critical to a healthy organism. We have used a CRISPR/Cas9 approach to screen human E3 ubiquitin ligases for influence on mitophagy under both basal cell culture conditions and upon acute mitochondrial depolarization. We identify two cullin-RING ligase substrate receptors, VHL and FBXL4, as the most profound negative regulators of basal mitophagy. We show that these converge, albeit via different mechanisms, on control of the mitophagy adaptors BNIP3 and BNIP3L/NIX. FBXL4 restricts NIX and BNIP3 levels via direct interaction and protein destabilization, while VHL acts through suppression of HIF1α-mediated transcription of BNIP3 and NIX. Depletion of NIX but not BNIP3 is sufficient to restore mitophagy levels. Our study contributes to an understanding of the aetiology of early-onset mitochondrial encephalomyopathy that is supported by analysis of a disease-associated mutation. We further show that the compound MLN4924, which globally interferes with cullin-RING ligase activity, is a strong inducer of mitophagy, thus providing a research tool in this context and a candidate therapeutic agent for conditions linked to mitochondrial dysfunction.


Asunto(s)
Mitofagia , Ubiquitina , Humanos , Mitofagia/fisiología , Ubiquitina/metabolismo , Proteínas Cullin/metabolismo , Mitocondrias/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Autofagia/fisiología
4.
Nat Rev Mol Cell Biol ; 12(5): 295-307, 2011 05.
Artículo en Inglés | MEDLINE | ID: mdl-21448225

RESUMEN

In the past decade, the diversity of signals generated by the ubiquitin system has emerged as a dominant regulator of biological processes and propagation of information in the eukaryotic cell. A wealth of information has been gained about the crucial role of spatial and temporal regulation of ubiquitin species of different lengths and linkages in the nuclear factor-κB (NF-κB) pathway, endocytic trafficking, protein degradation and DNA repair. This spatiotemporal regulation is achieved through sophisticated mechanisms of compartmentalization and sequential series of ubiquitylation events and signal decoding, which control diverse biological processes not only in the cell but also during the development of tissues and entire organisms.


Asunto(s)
Fenómenos Fisiológicos Celulares/fisiología , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Ubiquitina/metabolismo , Animales , Humanos , Modelos Biológicos , Ubiquitinación
5.
Nucleic Acids Res ; 49(10): 5684-5704, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33956155

RESUMEN

Combinatorial CRISPR-Cas screens have advanced the mapping of genetic interactions, but their experimental scale limits the number of targetable gene combinations. Here, we describe 3Cs multiplexing, a rapid and scalable method to generate highly diverse and uniformly distributed combinatorial CRISPR libraries. We demonstrate that the library distribution skew is the critical determinant of its required screening coverage. By circumventing iterative cloning of PCR-amplified oligonucleotides, 3Cs multiplexing facilitates the generation of combinatorial CRISPR libraries with low distribution skews. We show that combinatorial 3Cs libraries can be screened with minimal coverages, reducing associated efforts and costs at least 10-fold. We apply a 3Cs multiplexing library targeting 12,736 autophagy gene combinations with 247,032 paired gRNAs in viability and reporter-based enrichment screens. In the viability screen, we identify, among others, the synthetic lethal WDR45B-PIK3R4 and the proliferation-enhancing ATG7-KEAP1 genetic interactions. In the reporter-based screen, we identify over 1,570 essential genetic interactions for autophagy flux, including interactions among paralogous genes, namely ATG2A-ATG2B, GABARAP-MAP1LC3B and GABARAP-GABARAPL2. However, we only observe few genetic interactions within paralogous gene families of more than two members, indicating functional compensation between them. This work establishes 3Cs multiplexing as a platform for genetic interaction screens at scale.


Asunto(s)
Autofagia/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Técnicas de Inactivación de Genes/métodos , Redes Reguladoras de Genes/genética , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Carcinoma de Células Escamosas/mortalidad , Proliferación Celular/genética , Supervivencia Celular/genética , Bases de Datos Genéticas , Biblioteca de Genes , Genes Esenciales , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Estimación de Kaplan-Meier , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Pulmonares/mortalidad , Modelos Genéticos , ARN Guía de Kinetoplastida , RNA-Seq , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
Nat Methods ; 14(5): 504-512, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28319114

RESUMEN

Ubiquitination controls a plethora of cellular processes. Modifications by linear polyubiquitin have so far been linked with acquired and innate immunity, lymphocyte development and genotoxic stress response. Until now, a single E3 ligase complex (LUBAC), one specific deubiquitinase (OTULIN) and a very few linear polyubiquitinated substrates have been identified. Current methods for studying lysine-based polyubiquitination are not suitable for the detection of linear polyubiquitin-modified proteins. Here, we present an approach to discovering linear polyubiquitin-modified substrates by combining a lysine-less internally tagged ubiquitin (INT-Ub.7KR) with SILAC-based mass spectrometry. We applied our approach in TNFα-stimulated T-REx HEK293T cells and validated several newly identified linear polyubiquitin targets. We demonstrated that linear polyubiquitination of the novel LUBAC substrate TRAF6 is essential for NFκB signaling.


Asunto(s)
Endopeptidasas/metabolismo , Poliubiquitina/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , FN-kappa B/metabolismo , Poliubiquitina/genética , Procesamiento Proteico-Postraduccional , Transducción de Señal , Factor de Necrosis Tumoral alfa , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
7.
J Cell Sci ; 128(17): 3187-96, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26169395

RESUMEN

Rpn13 is an intrinsic ubiquitin receptor of the 26S proteasome regulatory subunit that facilitates substrate capture prior to degradation. Here we show that the C-terminal region of Rpn13 binds to the tetratricopeptide repeat (TPR) domain of SGTA, a cytosolic factor implicated in the quality control of mislocalised membrane proteins (MLPs). The overexpression of SGTA results in a substantial increase in steady-state MLP levels, consistent with an effect on proteasomal degradation. However, this effect is strongly dependent upon the interaction of SGTA with the proteasomal component Rpn13. Hence, overexpression of the SGTA-binding region of Rpn13 or point mutations within the SGTA TPR domain both inhibit SGTA binding to the proteasome and substantially reduce MLP levels. These findings suggest that SGTA can regulate the access of MLPs to the proteolytic core of the proteasome, implying that a protein quality control cycle that involves SGTA and the BAG6 complex can operate at the 19S regulatory particle. We speculate that the binding of SGTA to Rpn13 enables specific polypeptides to escape proteasomal degradation and/or selectively modulates substrate degradation.


Asunto(s)
Proteínas Portadoras/metabolismo , Moléculas de Adhesión Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Animales , Proteínas Portadoras/genética , Moléculas de Adhesión Celular/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/genética , Ratones , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mutación Puntual , Complejo de la Endopetidasa Proteasomal/genética , Estructura Terciaria de Proteína
8.
J Biol Chem ; 290(12): 7492-505, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25666615

RESUMEN

Mutations in the Park2 gene, encoding the RING-HECT hybrid E3 ubiquitin ligase parkin, are responsible for a common familial form of Parkinson disease. By mono- and polyubiquitinating target proteins, parkin regulates various cellular processes, including degradation of proteins within the 26 S proteasome, a large multimeric degradation machine. In our attempt to further elucidate the function of parkin, we have identified the proteasomal ubiquitin receptor Rpn13/ADRM1 as a parkin-interacting protein. We show that the N-terminal ubiquitin-like (Ubl) domain of parkin binds directly to the pleckstrin-like receptor for ubiquitin (Pru) domain within Rpn13. Using mutational analysis and NMR, we find that Pru binding involves the hydrophobic patch surrounding Ile-44 in the parkin Ubl, a region that is highly conserved between ubiquitin and Ubl domains. However, compared with ubiquitin, the parkin Ubl exhibits greater than 10-fold higher affinity for the Pru domain. Moreover, knockdown of Rpn13 in cells increases parkin levels and abrogates parkin recruitment to the 26 S proteasome, establishing Rpn13 as the major proteasomal receptor for parkin. In contrast, silencing Rpn13 did not impair parkin recruitment to mitochondria or parkin-mediated mitophagy upon carbonyl cyanide m-chlorophenyl hydrazone-induced mitochondrial depolarization. However, it did delay the clearance of mitochondrial proteins (TIM23, TIM44, and TOM20) and enhance parkin autoubiquitination. Taken together, these findings implicate Rpn13 in linking parkin to the 26 S proteasome and regulating the clearance of mitochondrial proteins during mitophagy.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Bases , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Espectroscopía de Resonancia Magnética , Complejo de la Endopetidasa Proteasomal/genética , Resonancia por Plasmón de Superficie , Técnicas del Sistema de Dos Híbridos
9.
J Biol Chem ; 290(15): 9738-52, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25716320

RESUMEN

We recently identified the antioxidant protein Sestrin 2 (Sesn2) as a suppressor of platelet-derived growth factor receptor ß (Pdgfrß) signaling and Pdgfrß signaling as an inducer of lung regeneration and injury repair. Here, we identified Sesn2 and the antioxidant gene inducer nuclear factor erythroid 2-related factor 2 (Nrf2) as positive regulators of proteasomal function. Inactivation of Sesn2 or Nrf2 induced reactive oxygen species-mediated proteasomal inhibition and Pdgfrß accumulation. Using bacterial artificial chromosome (BAC) transgenic HeLa and mouse embryonic stem cells stably expressing enhanced green fluorescent protein-tagged Sesn2 at nearly endogenous levels, we also showed that Sesn2 physically interacts with 2-Cys peroxiredoxins and Nrf2 albeit under different reductive conditions. Overall, we characterized a novel, redox-sensitive Sesn2/Pdgfrß suppressor pathway that negatively interferes with lung regeneration and is up-regulated in the emphysematous lungs of patients with chronic obstructive pulmonary disease (COPD).


Asunto(s)
Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Adulto , Animales , Western Blotting , Línea Celular , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Noqueados , Microscopía Confocal , Persona de Mediana Edad , Factor 2 Relacionado con NF-E2/genética , Proteínas Nucleares/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Transducción de Señal/genética , Adulto Joven
10.
Nature ; 453(7194): 481-8, 2008 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-18497817

RESUMEN

Proteasomal receptors that recognize ubiquitin chains attached to substrates are key mediators of selective protein degradation in eukaryotes. Here we report the identification of a new ubiquitin receptor, Rpn13/ARM1, a known component of the proteasome. Rpn13 binds ubiquitin through a conserved amino-terminal region termed the pleckstrin-like receptor for ubiquitin (Pru) domain, which binds K48-linked diubiquitin with an affinity of approximately 90 nM. Like proteasomal ubiquitin receptor Rpn10/S5a, Rpn13 also binds ubiquitin-like (UBL) domains of UBL-ubiquitin-associated (UBA) proteins. In yeast, a synthetic phenotype results when specific mutations of the ubiquitin binding sites of Rpn10 and Rpn13 are combined, indicating functional linkage between these ubiquitin receptors. Because Rpn13 is also the proteasomal receptor for Uch37, a deubiquitinating enzyme, our findings suggest a coupling of chain recognition and disassembly at the proteasome.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Complejo de la Endopetidasa Proteasomal/genética , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA