RESUMEN
There are two major pathways leading to induction of NF-κB subunits. The classical (or canonical) pathway typically leads to the induction of RelA or c-Rel containing complexes, and involves the degradation of IκBα in a manner dependent on IκB kinase (IKK) ß and the IKK regulatory subunit NEMO. The alternative (or non-canonical) pathway, involves the inducible processing of p100 to p52, leading to the induction of NF-κB2(p52)/RelB containing complexes, and is dependent on IKKα and NF-κB inducing kinase (NIK). Here we demonstrate that in primary human fibroblasts, the alternative NF-κB pathway subunits NF-κB2 and RelB have multiple, but distinct, effects on the expression of key regulators of the cell cycle, reactive oxygen species (ROS) generation and protein stability. Specifically, following siRNA knockdown, quantitative PCR, western blot analyses and chromatin immunoprecipitation (ChIP) show that NF-κB2 regulates the expression of CDK4 and CDK6, while RelB, through the regulation of genes such as PSMA5 and ANAPC1, regulates the stability of p21WAF1 and the tumour suppressor p53. These combine to regulate the activity of the retinoblastoma protein, Rb, leading to induction of polycomb protein EZH2 expression. Moreover, our ChIP analysis demonstrates that EZH2 is also a direct NF-κB target gene. Microarray analysis revealed that in fibroblasts, EZH2 antagonizes a subset of p53 target genes previously associated with the senescent cell phenotype, including DEK and RacGAP1. We show that this pathway provides the major route of crosstalk between the alternative NF-κB pathway and p53, a consequence of which is to suppress cell senescence. Importantly, we find that activation of NF-κB also induces EZH2 expression in CD40L stimulated cells from Chronic Lymphocytic Leukemia patients. We therefore propose that this pathway provides a mechanism through which microenvironment induced NF-κB can inhibit tumor suppressor function and promote tumorigenesis.
Asunto(s)
Senescencia Celular/genética , FN-kappa B/metabolismo , Complejo Represivo Polycomb 2/genética , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Ligando de CD40/agonistas , Ligando de CD40/metabolismo , Análisis por Conglomerados , Proteína Potenciadora del Homólogo Zeste 2 , Activación Enzimática , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Modelos Biológicos , Subunidad p52 de NF-kappa B/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Unión Proteica , Estabilidad Proteica , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción ReIB/metabolismo , Transcripción Genética , TranscriptomaRESUMEN
NF-kappaB is constitutively activated in primary human thyroid tumors, particularly in those of anaplastic type. The inhibition of NF-kappaB activity in the human anaplastic thyroid carcinoma cell line, FRO, leads to an increased susceptibility to chemotherapeutic drug-induced apoptosis and to the blockage of their ability to form tumors in nude mice. To identify NF-kappaB target genes involved in thyroid cancer, we analyzed the secretome of conditioned media from parental and NF-kappaB-null FRO cells. Proteomic analysis revealed that the neutrophil gelatinase-associated lipocalin (NGAL), a protein involved in inflammatory and immune responses, is secreted by FRO cells whereas its expression is strongly reduced in the NF-kappaB-null FRO cells. NGAL is highly expressed in human thyroid carcinomas, and knocking down its expression blocks the ability of FRO cells to grow in soft agar and form tumors in nude mice. These effects are reverted by the addition of either recombinant NGAL or FRO conditioned medium. In addition, we show that the prosurvival activity of NGAL is mediated by its ability to bind and transport iron inside the cells. Our data suggest that NF-kappaB contributes to thyroid tumor cell survival by controlling iron uptake via NGAL.
Asunto(s)
Proteínas de Fase Aguda/metabolismo , Regulación Neoplásica de la Expresión Génica , Lipocalinas/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Neoplasias de la Tiroides/enzimología , Neoplasias de la Tiroides/patología , Proteínas de Fase Aguda/genética , Línea Celular Tumoral , Supervivencia Celular , Salud , Humanos , Quinasa I-kappa B/metabolismo , Inmunohistoquímica , Lipocalina 2 , Lipocalinas/genética , Proteómica , Proteínas Proto-Oncogénicas/genética , ARN Interferente Pequeño/genética , Neoplasias de la Tiroides/genéticaRESUMEN
The conformational stability of the rat thyroid transcription factor 1 homeodomain, TTF-1HD, has been investigated by means of circular dichroism (CD) and differential scanning calorimetry (DSC) measurements at pH 5.0 as a function of KCl concentration. Thermal unfolding of TTF-1HD is a reversible two-state transition. The protein is not stable against temperature, showing a denaturation temperature of 32 degrees C in the absence of salt and 50 degrees C at 75 mM KCl. The binding energetics of TTF-1HD to its target DNA sequence has been characterized by means of isothermal titration calorimetry (ITC) measurements, complemented with CD data. At 25 degrees C, pH 5.0 and 75 mM KCl, the binding constant amounts to 1.5 x 10(8)M(-1) and the binding enthalpy change amounts to -41 kJ mol(-1). The process is enthalpy driven, but also the entropy change is favorable to complex formation. To gain a molecular level understanding of the interactions determining the association of TTF-1HD to the target DNA sequence structural information would be requested, but it is not yet available. Therefore, structural models of two complexes, TTF-1HD with the target DNA sequence and TTF-1HD with a modified DNA sequence, have been constructed by using as a template the NMR structure of the complex between NK-2 HD and its target DNA, and by performing molecular dynamics simulations 3.5 ns long. Analysis of these models allows one to shed light on the origin of the DNA binding specificity characteristic of TTF-1HD.
Asunto(s)
ADN/química , Proteínas de Homeodominio/química , Proteínas Nucleares/química , Termodinámica , Factores de Transcripción/química , Animales , Sitios de Unión , Calorimetría , Dicroismo Circular , ADN/metabolismo , Proteínas de Homeodominio/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Conformación Proteica , Ratas , Factor Nuclear Tiroideo 1 , Factores de Transcripción/metabolismoRESUMEN
Activation of the NFκB signaling pathway allows the cell to respond to infection and stress and can affect many cellular processes. As a consequence, NFκB activity must be integrated with a wide variety of parallel signaling pathways. One mechanism through which NFκB can exert widespread effects is through controlling the expression of key regulatory kinases. Here we report that NFκB regulates the expression of genes required for centrosome duplication, and that Polo-like kinase 4 (PLK4) is a direct NFκB target gene. RNA interference, chromatin immunoprecipitation, and analysis of the PLK4 promoter in a luciferase reporter assay revealed that all NFκB subunits participate in its regulation. Moreover, we demonstrate that NFκB regulation of PLK4 expression is seen in multiple cell types. Significantly long-term deletion of the NFκB2 (p100/p52) subunit leads to defects in centrosome structure. This data reveals a new component of cell cycle regulation by NFκB and suggests a mechanism through which deregulated NFκB activity in cancer can lead to increased genomic instability and uncontrolled proliferation.
Asunto(s)
Subunidad p52 de NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Línea Celular Tumoral , Centrosoma/química , Centrosoma/metabolismo , Inmunoprecipitación de Cromatina , Inestabilidad Genómica , Células HeLa , Humanos , Subunidad p52 de NF-kappa B/antagonistas & inhibidores , Subunidad p52 de NF-kappa B/genética , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de SeñalRESUMEN
CONTEXT: Micro-RNAs (miRNAs) have been recently involved in the modulation of several biological activities including cancer. Many human tumors show deregulated expression of miRNAs targeting oncogenes and/or tumor suppressors, thus identifying miRNAs as new molecular targets for cancer therapy. OBJECTIVES: Nuclear factor (NF)-kappaB is strongly activated in human anaplastic thyroid carcinomas (ATCs). Because the regulation of miRNA expression is under control of RNA polymerase II-dependent transcription factors, we stably inactivated NF-kappaB in the ATC-derived FRO cell line and analyzed its miRNA profile in comparison with the parental counterpart by using a miRNA chip microarray. RESULTS: The analysis revealed that a number of miRNAs were differentially expressed in the two cell lines. Among others, the miR-146a showed a strong down-regulation that was confirmed by quantitative real time RT-PCR. The expression of miR-146a was almost undetectable in mouse embryonic fibroblasts isolated from the RelA knockout mice and was restored after reexpression of RelA, thus indicating that miR-146a transcription was controlled by NF-kappaB. The inhibition of miR-146a expression in FRO cells decreased their oncogenic potential and increased the susceptibility to chemotherapeutic drug-induced apoptosis. No difference was found in the growth rate between untransfected and miR-146a-null FRO cells. Importantly, the miR-146a resulted in overexpression of human ATC specimens compared with the normal thyroid tissue. CONCLUSIONS: Our results show that NF-kappaB contributes to anaplastic thyroid cancer up-regulating the expression of miR-146a.
Asunto(s)
Carcinoma/genética , MicroARNs/genética , FN-kappa B/genética , Neoplasias de la Tiroides/genética , Regulación hacia Arriba/genética , Análisis de Varianza , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Western Blotting , Carcinoma/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inmunohistoquímica , Ratones , MicroARNs/metabolismo , Análisis por Micromatrices , FN-kappa B/metabolismo , FN-kappa B/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias de la Tiroides/metabolismo , Regulación hacia Arriba/efectos de los fármacosRESUMEN
Nuclear factor kappaB (NF-kappaB) plays a pivotal role in inflammation, immunity, stress responses, and protection from apoptosis. Canonical activation of NF-kappaB is dependent on the phosphorylation of the inhibitory subunit IkappaBalpha that is mediated by a multimeric, high molecular weight complex, called IkappaB kinase (IKK) complex. This is composed of two catalytic subunits, IKKalpha and IKKbeta, and a regulatory subunit, NEMO/IKKgamma. The latter protein is essential for the activation of IKKs and NF-kappaB, but its mechanism of action is not well understood. Here we identified ABIN-1 (A20 binding inhibitor of NF-kappaB) as a NEMO/IKKgamma-interacting protein. ABIN-1 has been previously identified as an A20-binding protein and it has been proposed to mediate the NF-kappaB inhibiting effects of A20. We find that both ABIN-1 and A20 inhibit NF-kappaB at the level of the IKK complex and that A20 inhibits activation of NF-kappaB by de-ubiquitination of NEMO/IKKgamma. Importantly, small interfering RNA targeting ABIN-1 abrogates A20-dependent de-ubiquitination of NEMO/IKKgamma and RNA interference of A20 impairs the ability of ABIN-1 to inhibit NF-kappaB activation. Altogether our data indicate that ABIN-1 physically links A20 to NEMO/IKKgamma and facilitates A20-mediated de-ubiquitination of NEMO/IKKgamma, thus resulting in inhibition of NF-kappaB.