Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Food Microbiol ; 66: 72-76, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28576375

RESUMEN

Ricotta fresca cheese is susceptible to secondary contamination and is able to support the growth of pathogens or spoilage psychotrophic bacteria during storage. The aim of the present study was to evaluate which among three commercial biopreservatives was suitable to be used to control the growth of spoilage microorganisms in sheep's milk MAP ricotta fresca cheese. 144 Ricotta fresca cheese samples were inoculated either with the bioprotective culture Lyofast FPR 2 (including Enterococcus faecium, Lactobacillus plantarum e Lactobacillus rhamnosus) or Lyofast CNBAL (Carnobacterium spp) or the fermentate MicroGARD 430. Not inoculated control and experimental ricotta were MAP packed (30% CO2 and 70% N2) and stored at 4 °C. Triplicate samples were analyzed after 5 h and 7, 14 and 21 days after inoculation for total bacterial count, mesophilic lactic acid bacteria, Enterobacteriaceae, Pseudomonas spp, Listeria monocytogenes, moulds and yeasts. Among the tested biopreservatives only Carnobacterium spp was able to control Pseudomonas spp and Enterobacteriaceae. The maximum reduction in the concentration of Pseudomonas spp and Enterobacteriaceae was respectively 1.93 and 2.66 log10 cfu/g, observed 14 days after production. Therefore, Carnobacterium spp was selected as the culture of choice to conduct a challenge study against Pseudomonas spp.


Asunto(s)
Antibiosis , Queso/microbiología , Conservación de Alimentos/métodos , Lactobacillaceae/fisiología , Animales , Queso/economía , Enterobacteriaceae/crecimiento & desarrollo , Contaminación de Alimentos/análisis , Contaminación de Alimentos/economía , Contaminación de Alimentos/prevención & control , Microbiología de Alimentos/economía , Conservación de Alimentos/economía , Listeria monocytogenes/crecimiento & desarrollo , Leche/microbiología , Ovinos
2.
J Agric Food Chem ; 71(28): 10598-10606, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37394748

RESUMEN

Spelt (Triticum aestivum ssp. spelta) is part of the so-called ancient wheats. These types of wheats are experiencing a revival as they have been proposed to be healthier than conventional wheat. However, the given healthier condition of spelt is not substantiated by solid scientific evidence. The objective of this study was to analyze the genetic variability for several grain components, related to nutritional quality (arabinoxylans, micronutrients, phytic acid) in a set of spelt and common wheat genotypes to determinate if spelt is potentially healthier than common wheat. The results obtained indicated that within the compared species, there is a significant variation in the nutritional compounds, and it is not truthful and accurate to state that one species is healthier than the other. Within both groups, genotypes showing outstanding values for some traits were detected, which could be used in breeding programs to develop new wheat cultivars with good agronomic performance and nutritional quality.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Fenotipo , Genotipo , Grano Comestible , Valor Nutritivo
3.
Science ; 286(5446): 1893-7, 1999 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-10583945

RESUMEN

Translation uses the genetic information in messenger RNA (mRNA) to synthesize proteins. Transfer RNAs (tRNAs) are charged with an amino acid and brought to the ribosome, where they are paired with the corresponding trinucleotide codon in mRNA. The amino acid is attached to the nascent polypeptide and the ribosome moves on to the next codon. The cycle is then repeated to produce a full-length protein. Proofreading and editing processes are used throughout protein synthesis to ensure the faithful translation of genetic information. The maturation of tRNAs and mRNAs is monitored, as is the identity of amino acids attached to tRNAs. Accuracy is further enhanced during the selection of aminoacyl-tRNAs on the ribosome and their base pairing with mRNA. Recent studies have begun to reveal the molecular mechanisms underpinning quality control and go some way to explaining the phenomenal accuracy of translation first observed over three decades ago.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Bacterias/genética , Bacterias/metabolismo , Codón , Células Eucariotas/metabolismo , Modelos Genéticos , ARN Bacteriano/metabolismo , Ribosomas/metabolismo
4.
Science ; 287(5452): 479-82, 2000 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-10642548

RESUMEN

The genome sequences of certain archaea do not contain recognizable cysteinyl-transfer RNA (tRNA) synthetases, which are essential for messenger RNA-encoded protein synthesis. However, a single cysteinyl-tRNA synthetase activity was detected and purified from one such organism, Methanococcus jannaschii. The amino-terminal sequence of this protein corresponded to the predicted sequence of prolyl-tRNA synthetase. Biochemical and genetic analyses indicated that this archaeal form of prolyl-tRNA synthetase can synthesize both cysteinyl-tRNA(Cys) and prolyl-tRNA(Pro). The ability of one enzyme to provide two aminoacyl-tRNAs for protein synthesis raises questions about concepts of substrate specificity in protein synthesis and may provide insights into the evolutionary origins of this process.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Methanococcus/enzimología , Complejos Multienzimáticos/metabolismo , Aminoacil-ARN de Transferencia/biosíntesis , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/aislamiento & purificación , Sitios de Unión , Cisteína/metabolismo , Cisteína/farmacología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Evolución Molecular , Genes Arqueales , Methanococcus/genética , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/aislamiento & purificación , Prolina/metabolismo , Prolina/farmacología , Análisis de Secuencia de Proteína , Especificidad por Sustrato , Aminoacilación de ARN de Transferencia , Transformación Bacteriana
5.
Science ; 278(5340): 1119-22, 1997 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-9353192

RESUMEN

The sequencing of euryarchaeal genomes has suggested that the essential protein lysyl-transfer RNA (tRNA) synthetase (LysRS) is absent from such organisms. However, a single 62-kilodalton protein with canonical LysRS activity was purified from Methanococcus maripaludis, and the gene that encodes this protein was cloned. The predicted amino acid sequence of M. maripaludis LysRS is similar to open reading frames of unassigned function in both Methanobacterium thermoautotrophicum and Methanococcus jannaschii but is unrelated to canonical LysRS proteins reported in eubacteria, eukaryotes, and the crenarchaeote Sulfolobus solfataricus. The presence of amino acid motifs characteristic of the Rossmann dinucleotide-binding domain identifies M. maripaludis LysRS as a class I aminoacyl-tRNA synthetase, in contrast to the known examples of this enzyme, which are class II synthetases. These data question the concept that the classification of aminoacyl-tRNA synthetases does not vary throughout living systems.


Asunto(s)
Lisina-ARNt Ligasa/química , Lisina-ARNt Ligasa/clasificación , Methanococcus/enzimología , Acilación , Secuencia de Aminoácidos , Animales , Bacterias/enzimología , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Euryarchaeota/enzimología , Euryarchaeota/genética , Evolución Molecular , Genes Arqueales , Humanos , Cinética , Lisina-ARNt Ligasa/genética , Lisina-ARNt Ligasa/metabolismo , Methanococcus/genética , Datos de Secuencia Molecular , Filogenia , Aminoacil-ARN de Transferencia/biosíntesis , Alineación de Secuencia , Sulfolobus/enzimología
6.
Trends Biochem Sci ; 22(2): 39-42, 1997 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9048478

RESUMEN

Aminoacyl-tRNAs are key components in protein synthesis. They are formed directly by correct acylation of tRNA (by aminoacyl-tRNA synthetases) or indirectly by tRNA-dependent transformation of misacylated tRNAs. The accuracy of aminoacyl-tRNA synthesis is enhanced by a number of further protein-RNA or protein-protein interactions, some of which are restricted to Archaea, and might reflect adaptation mechanisms to diverse conditions.


Asunto(s)
Aminoacil-ARN de Transferencia/biosíntesis , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Estructura Molecular
7.
Trends Biochem Sci ; 25(7): 311-6, 2000 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10871880

RESUMEN

As originally postulated in Crick's Adaptor hypothesis, the faithful synthesis of proteins from messenger RNA is dependent on the presence of perfectly acylated tRNAs. The hypothesis also suggested that each aminoacyl-tRNA would be made by a unique enzyme. Recent data have now forced a revision of this latter point, with an increasingly diverse array of enzymes and pathways being implicated in aminoacyl-tRNA synthesis. These unexpected findings have far-reaching implications for our understanding of protein synthesis and its origins.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , ARN de Transferencia Aminoácido-Específico/metabolismo , Aminoacil-ARNt Sintetasas/clasificación , Aminoacil-ARNt Sintetasas/genética , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Evolución Molecular , Lisina-ARNt Ligasa/clasificación , Lisina-ARNt Ligasa/metabolismo , Modelos Genéticos , Filogenia , Biosíntesis de Proteínas , ARN de Transferencia Aminoácido-Específico/biosíntesis , ARN de Transferencia Aminoácido-Específico/genética , Especificidad por Sustrato
8.
Microbiol Mol Biol Rev ; 64(1): 202-36, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10704480

RESUMEN

The aminoacyl-tRNA synthetases (AARSs) and their relationship to the genetic code are examined from the evolutionary perspective. Despite a loose correlation between codon assignments and AARS evolutionary relationships, the code is far too highly structured to have been ordered merely through the evolutionary wanderings of these enzymes. Nevertheless, the AARSs are very informative about the evolutionary process. Examination of the phylogenetic trees for each of the AARSs reveals the following. (i) Their evolutionary relationships mostly conform to established organismal phylogeny: a strong distinction exists between bacterial- and archaeal-type AARSs. (ii) Although the evolutionary profiles of the individual AARSs might be expected to be similar in general respects, they are not. It is argued that these differences in profiles reflect the stages in the evolutionary process when the taxonomic distributions of the individual AARSs became fixed, not the nature of the individual enzymes. (iii) Horizontal transfer of AARS genes between Bacteria and Archaea is asymmetric: transfer of archaeal AARSs to the Bacteria is more prevalent than the reverse, which is seen only for the "gemini group. " (iv) The most far-ranging transfers of AARS genes have tended to occur in the distant evolutionary past, before or during formation of the primary organismal domains. These findings are also used to refine the theory that at the evolutionary stage represented by the root of the universal phylogenetic tree, cells were far more primitive than their modern counterparts and thus exchanged genetic material in far less restricted ways, in effect evolving in a communal sense.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Evolución Molecular , Código Genético/fisiología , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/fisiología , Archaea/enzimología , Archaea/genética , Chlorobi/enzimología , Chlorobi/genética , Filogenia , Spirochaeta/enzimología , Spirochaeta/genética , Thermus/enzimología , Thermus/genética
9.
Oncogene ; 26(29): 4199-208, 2007 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-17224908

RESUMEN

The ubiquitin (Ub)-proteasome system (UPS) promotes the proteasomal degradation of target proteins by decorating them with Ub labels. Emerging evidence indicates a role of UPS in regulating gene transcription. In this study, we provided evidence for the involvement of UPS in the transcriptional activation function of tumor suppressor p53. We showed that both ubiquitylation and proteasomal functions are required for efficient transcription mediated by p53. Disruption of transcription by actinomycin D, 5,6-dichloro-1-beta-D-ribofuranosyl-benzimadazole or alpha-amanitin leads to accumulation of cellular p53 protein. Proteasome inhibition by MG132 increases the occupancy of p53 protein at p53-responsive p21(waf1) promoter. In addition, the Sug-1 component of 19S proteasome physically interacts with p53 in vitro and in vivo. Moreover, in response to ultraviolet-induced DNA damage, both the 19S proteasomal components, Sug1 and S1, are recruited to p21(waf1) promoter region in a kinetic pattern similar to that of p53. These results suggested that UPS positively regulates p53-mediated transcription at p21(waf1) promoter.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regiones Promotoras Genéticas , Complejo de la Endopetidasa Proteasomal/fisiología , Activación Transcripcional/genética , Proteína p53 Supresora de Tumor/fisiología , Enzimas Activadoras de Ubiquitina/fisiología , Animales , Línea Celular Tumoral , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/biosíntesis , Células HeLa , Humanos , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/metabolismo , Síndrome de Li-Fraumeni/patología , Ratones
10.
Curr Biol ; 11(14): R563-5, 2001 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-11509255

RESUMEN

The genetic code can be interpreted during translation as 21 amino acids and three termination signals. Recent advances at the interface of chemistry and molecular biology are extending the genetic code to allow assignment of new amino acids to existing codons, providing new functional groups for protein synthesis.


Asunto(s)
Biosíntesis de Proteínas , Proteínas/química , Aminoácidos/química , Aminoácidos/genética , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Código Genético , Proteínas/genética
11.
Nucleic Acids Res ; 27(18): 3631-7, 1999 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-10471730

RESUMEN

Sequence-specific interactions between aminoacyl-tRNA synthetases and their cognate tRNAs ensure both accurate RNA recognition and the efficient catalysis of aminoacylation. The effects of tRNA(Trp)variants on the aminoacylation reaction catalyzed by wild-type Escherichia coli tryptophanyl-tRNA synthe-tase (TrpRS) have now been investigated by stopped-flow fluorimetry, which allowed a pre-steady-state analysis to be undertaken. This showed that tRNA(Trp)identity has some effect on the ability of tRNA to bind the reaction intermediate TrpRS-tryptophanyl-adenylate, but predominantly affects the rate at which trypto-phan is transferred from TrpRS-tryptophanyl adenylate to tRNA. Use of the binding ( K (tRNA)) and rate constants ( k (4)) to determine the energetic levels of the various species in the aminoacylation reaction showed a difference of approximately 2 kcal mol(-1)in the barrier to transition state formation compared to wild-type for both tRNA(Trp)A-->C73 and. These results directly show that tRNA identity contributes to the degree of complementarity to the transition state for tRNA charging in the active site of an aminoacyl-tRNA synthetase:aminoacyl-adenylate:tRNA complex.


Asunto(s)
Escherichia coli/enzimología , Aminoacil-ARN de Transferencia/biosíntesis , ARN de Transferencia de Triptófano/genética , ARN de Transferencia de Triptófano/metabolismo , Triptófano-ARNt Ligasa/metabolismo , Adenosina Monofosfato/metabolismo , Secuencia de Bases , Sitios de Unión , Catálisis , Escherichia coli/genética , Fluorescencia , Cinética , Mutación , Conformación de Ácido Nucleico , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia de Glutamina/química , ARN de Transferencia de Glutamina/genética , ARN de Transferencia de Glutamina/metabolismo , ARN de Transferencia de Triptófano/química , Especificidad por Sustrato , Termodinámica , Triptófano/metabolismo
12.
Nucleic Acids Res ; 29(22): 4699-706, 2001 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-11713320

RESUMEN

Post-transcriptional modifications in archaeal RNA are known to be phylogenetically distinct but relatively little is known of tRNA from the Methanococci, a lineage of methanogenic marine euryarchaea that grow over an unusually broad temperature range. Transfer RNAs from Methanococcus vannielii, Methanococcus maripaludis, the thermophile Methanococcus thermolithotrophicus, and hyperthermophiles Methanococcus jannaschii and Methanococcus igneus were studied to determine whether modification patterns reflect the close phylogenetic relationships inferred from small ribosomal subunit RNA sequences, and to examine modification differences associated with temperature of growth. Twenty-four modified nucleosides were characterized, including the complex tricyclic nucleoside wyosine characteristic of position 37 in tRNA(Phe) and known previously only in eukarya, plus two new wye family members of presently unknown structure. The hypermodified nucleoside 5-methylaminomethyl-2-thiouridine, reported previously only in bacterial tRNA at the first position of the anticodon, was identified by liquid chromatography-electrospray ionization mass spectrometry in four of the five organisms. The ribose-methylated nucleosides, 2'-O-methyladenosine, N(2),2'-O-dimethylguanosine and N(2),N(2),2'-O-trimethylguanosine, were found only in hyperthermophile tRNA, consistent with their proposed roles in thermal stabilization of tRNA.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN de Archaea/metabolismo , ARN de Transferencia/metabolismo , Cromatografía Líquida de Alta Presión , Methanococcales/genética , Methanococcales/metabolismo , Nucleósidos/análisis , Nucleósidos/genética , Nucleótidos/genética , Nucleótidos/metabolismo , Filogenia , ARN de Archaea/genética , ARN de Transferencia/genética , Espectrometría de Masa por Ionización de Electrospray
13.
Genetics ; 152(4): 1269-76, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10430557

RESUMEN

Accurate aminoacyl-tRNA synthesis is essential for faithful translation of the genetic code and consequently has been intensively studied for over three decades. Until recently, the study of aminoacyl-tRNA synthesis in archaea had received little attention. However, as in so many areas of molecular biology, the advent of archaeal genome sequencing has now drawn researchers to this field. Investigations with archaea have already led to the discovery of novel pathways and enzymes for the synthesis of numerous aminoacyl-tRNAs. The most surprising of these findings has been a transamidation pathway for the synthesis of asparaginyl-tRNA and a novel lysyl-tRNA synthetase. In addition, seryl- and phenylalanyl-tRNA synthetases that are only marginally related to known examples outside the archaea have been characterized, and the mechanism of cysteinyl-tRNA formation in Methanococcus jannaschii and Methanobacterium thermoautotrophicum is still unknown. These results have revealed completely unexpected levels of complexity and diversity, questioning the notion that aminoacyl-tRNA synthesis is one of the most conserved functions in gene expression. It has now become clear that the distribution of the various mechanisms of aminoacyl-tRNA synthesis in extant organisms has been determined by numerous gene transfer events, indicating that, while the process of protein biosynthesis is orthologous, its constituents are not.


Asunto(s)
Aminoacil-ARNt Sintetasas/fisiología , Archaea/enzimología , Proteínas Arqueales/fisiología , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Archaea/genética , Proteínas Arqueales/genética , Euryarchaeota/enzimología , Evolución Molecular , Regulación de la Expresión Génica Arqueal , Lisina-ARNt Ligasa/genética , Lisina-ARNt Ligasa/fisiología , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/fisiología , Filogenia , ARN de Archaea/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Selenocisteína/metabolismo , Serina-ARNt Ligasa/genética , Serina-ARNt Ligasa/fisiología
14.
FEBS Lett ; 364(3): 272-5, 1995 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-7758582

RESUMEN

It has previously been demonstrated that the unnatural amino acid p-Cl-phenylalanine can be attached to tRNA(Phe) by a modified phenylalanyl-tRNA synthetase with relaxed amino acid substrate specificity. We show that this modification to the translational machinery of Escherichia coli is the only requirement for the incorporation of either p-Cl- or p-Br-phenylalanine into full-length luciferase in vitro. The incorporation of p-Cl-phenylalanine was also demonstrated in vivo using a suitably modified host strain. These results represent the first description of the incorporation into a protein in vivo of an unnatural amino acid which is normally rejected by the cellular translational machinery.


Asunto(s)
Fenilalanina-ARNt Ligasa/metabolismo , Fenilalanina/análogos & derivados , Chaperoninas/farmacología , Escherichia coli/genética , Fenclonina/metabolismo , Técnicas de Inmunoadsorción , Luciferasas/biosíntesis , Luciferasas/química , Fenilalanina/metabolismo , Fenilalanina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/genética , Biosíntesis de Proteínas , Salmonella typhimurium , Relación Estructura-Actividad , Especificidad por Sustrato
15.
FEBS Lett ; 434(1-2): 149-54, 1998 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-9738468

RESUMEN

Molecular phylogenetic studies of glutaminyl-tRNA synthetase suggest that it has relatively recently evolved from the closely related enzyme glutamyl-tRNA synthetase. We have now attempted to retrace one of the key steps in this process by selecting glutaminyl-tRNA synthetase mutants displaying enhanced glutamic acid recognition. Mutagenesis of two residues proximal to the active site, Phe-90 and Tyr-240, was found to improve glutamic acid recognition 3-5-fold in vitro and resulted in the misacylation of tRNA(Gln) with glutamic acid. In vivo expression of the genes encoding these misacylating variants of glutaminyl-tRNA synthetase reduced cellular growth rates by 40%, probably as a result of an increase in translational error rates. These results provide the first biochemical evidence that glutaminyl-tRNA synthetase originated through duplication and consequent diversification of an ancestral glutamyl-tRNA synthetase-encoding gene.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Evolución Molecular , Ácido Glutámico/metabolismo , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Sitios de Unión/genética , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Alineación de Secuencia
16.
FEBS Lett ; 358(3): 293-6, 1995 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-7843418

RESUMEN

The transfer of amino acid to tRNA by Escherichia coli phenylalanyl-tRNA synthetase (PheRS) was studied using replacements of Ala294 in the alpha subunit previously shown to have modified amino acid specificity. Steady-state analysis of tRNA charging showed little difference between wild-type and mutants, whereas pre-steady-state analysis revealed higher rates of tRNA charging by both the A294S PheRS-phenylalanyl adenylate and the A294G PheRS-p-Cl-phenylalanyl adenylate. The decrease in energy required for the formation of the transition state of amino acid transfer in these mutants could be related to a weaker binding of the amino acid in the aminoacyl adenylate complex. Thus a compromise appears to exist between amino acid activation and tRNA charging, because slowing down the first step increases the rate of the second step, possibly as a result of decreased stability of the PheRS.amino acid-AMP complex.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Fenilalanina-ARNt Ligasa/metabolismo , ARN de Transferencia/metabolismo , Adenosina Monofosfato/metabolismo , Cinética
17.
FEBS Lett ; 439(3): 235-40, 1998 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-9845329

RESUMEN

Like all other eukaryal cytosolic seryl-tRNA synthetase (SerRS) enzymes, Saccharomyces cerevisiae SerRS contains a C-terminal extension not found in the enzymes of eubacterial and archaeal origin. Overexpression of C-terminally truncated SerRS lacking the 20-amino acid appended domain (SerRSC20) is toxic to S. cerevisiae possibly because of altered substrate recognition. Compared to wild-type SerRS the truncated enzyme displays impaired tRNA-dependent serine recognition and is less stable. This suggests that the C-terminal peptide is important for the formation or maintenance of the enzyme structure optimal for substrate binding and catalysis.


Asunto(s)
ADN de Hongos/metabolismo , ARN de Transferencia de Serina/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Serina-ARNt Ligasa/farmacología , Secuencia de Aminoácidos , Estabilidad de Enzimas , Cinética , Datos de Secuencia Molecular , Conformación Proteica , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Serina-ARNt Ligasa/genética , Serina-ARNt Ligasa/metabolismo , Especificidad por Sustrato
19.
Eur J Pharmacol ; 249(3): 307-15, 1993 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-7904564

RESUMEN

The alpha 1-adrenoceptor subtypes present in the smooth muscle of urethra and prostate of different animal species, including man, were characterized by using receptor binding techniques. In prostatic urethra and prostate membranes, [3H]prazosin labelled a single population of alpha 1-adrenoceptors (Hill coefficient not different from unity) with a high affinity in the range 0.21-0.51 nM. The number of specific [3H]prazosin binding sites was partially affected by chloroethylclonidine only in human and rat prostate membranes, whereas this agent proved practically devoid of activity in rabbit and dog prostate membranes as well as in the prostatic urethra membranes of all the animal species examined. These findings indicate that in prostatic and urethral membranes the alpha 1-adrenoceptors mainly belong to the alpha 1A subtype. The binding results were confirmed by in vitro functional studies on noradrenaline-induced contractions of rabbit and dog urethral preparations. The agonist-induced contractions were practically unaffected by preincubation of both tissues with chloroethylclonidine, but were sensitive to nifedipine. We found, moreover, a good correlation between the potency of different selective and non-selective alpha 1-adrenoceptor antagonists (WB-4101, 5-methylurapidil, phentolamine, spiperone, prazosin and urapidil) tested against the noradrenaline-induced contractions of rabbit urethra and their affinity for the alpha 1A-adrenoceptor subtype, no correlation with the affinity for the alpha 1B subtype, and a lower correlation with the affinity for the alpha 1C-adrenoceptor subtype.


Asunto(s)
Antagonistas Adrenérgicos alfa/farmacología , Músculo Liso/metabolismo , Próstata/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Uretra/metabolismo , Alquilantes/farmacología , Animales , Sitios de Unión , Clonidina/análogos & derivados , Clonidina/farmacología , Perros , Humanos , Masculino , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Norepinefrina/farmacología , Prazosina/metabolismo , Próstata/efectos de los fármacos , Conejos , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos alfa 1/fisiología , Especificidad de la Especie , Uretra/efectos de los fármacos
20.
Acta Biochim Pol ; 48(2): 313-21, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11732603

RESUMEN

Translation is the process by which ribosomes direct protein synthesis using the genetic information contained in messenger RNA (mRNA). Transfer RNAs (tRNAs) are charged with an amino acid and brought to the ribosome, where they are paired with the corresponding trinucleotide codon in mRNA. The amino acid is attached to the nascent polypeptide and the ribosome moves on to the next codon. Thus, the sequential pairing of codons in mRNA with tRNA anticodons determines the order of amino acids in a protein. It is therefore imperative for accurate translation that tRNAs are only coupled to amino acids corresponding to the RNA anticodon. This is mostly, but not exclusively, achieved by the direct attachment of the appropriate amino acid to the 3'-end of the corresponding tRNA by the aminoacyl-tRNA synthetases. To ensure the accurate translation of genetic information, the aminoacyl-tRNA synthetases must display an extremely high level of substrate specificity. Despite this highly conserved function, recent studies arising from the analysis of whole genomes have shown a significant degree of evolutionary diversity in aminoacyl-tRNA synthesis. For example, non-canonical routes have been identified for the synthesis of Asn-tRNA, Cys-tRNA, Gln-tRNA and Lys-tRNA. Characterization of non-canonical aminoacyl-tRNA synthesis has revealed an unexpected level of evolutionary divergence and has also provided new insights into the possible precursors of contemporary aminoacyl-tRNA synthetases.


Asunto(s)
Evolución Molecular , Genómica , Aminoacil-ARN de Transferencia/biosíntesis , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Filogenia , Biosíntesis de Proteínas , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA