Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(7): 1102-1113, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36308430

RESUMEN

TFIIH is a complex essential for transcription of protein-coding genes by RNA polymerase II, DNA repair of UV-lesions and transcription of rRNA by RNA polymerase I. Mutations in TFIIH cause the cancer prone DNA-repair disorder xeroderma pigmentosum (XP) and the developmental and premature aging disorders trichothiodystrophy (TTD) and Cockayne syndrome. A total of 50% of the TTD cases are caused by TFIIH mutations. Using TFIIH mutant patient cells from TTD and XP subjects we can show that the stress-sensitivity of the proteome is reduced in TTD, but not in XP. Using three different methods to investigate the accuracy of protein synthesis by the ribosome, we demonstrate that translational fidelity of the ribosomes of TTD, but not XP cells, is decreased. The process of ribosomal synthesis and maturation is affected in TTD cells and can lead to instable ribosomes. Isolated ribosomes from TTD patients show an elevated error rate when challenged with oxidized mRNA, explaining the oxidative hypersensitivity of TTD cells. Treatment of TTD cells with N-acetyl cysteine normalized the increased translational error-rate and restored translational fidelity. Here we describe a pathomechanism that might be relevant for our understanding of impaired development and aging-associated neurodegeneration.


Asunto(s)
Síndromes de Tricotiodistrofia , Xerodermia Pigmentosa , Humanos , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo , Reparación del ADN/genética , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/patología , Mutación , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/patología , Ribosomas/genética , Ribosomas/metabolismo
2.
Bioessays ; 45(7): e2200230, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37194995

RESUMEN

Neurodegenerative syndromes present as proteinopathies - does ribosomal infidelity contribute to the protein toxicity that is the driving force for neuronal cell loss? Intracellular and extracellular protein aggregates overwhelm the clearance capacity of cells and tissues. Proteins aggregate when hydrophobic residues are exposed. Hydrophobic residues become exposed when proteins are misfolded. Protein misfolding can originate from translational errors at the ribosome. Indeed, the most error-prone process in gene expression is translation at the ribosome. Recent evidence indicates that manipulating the ribosomal accuracy impacts on the lifespan of model organisms and a reduced translational accuracy is accompanied by neurodegeneration. The first hit in aging-associated neurodegenerative disease may be the well-documented decline of cellular buffering capacity by aging. A second hit that impacts on the quality of protein synthesis could be the driving force for the observed loss of proteostasis in neurodegeneration. This hypothesis provides an explanation for the late onset of most neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/metabolismo , Ribosomas/metabolismo , Proteínas/metabolismo , Proteostasis , Longevidad
3.
Nucleic Acids Res ; 49(19): 11197-11210, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34581812

RESUMEN

Ribosome biogenesis is a highly energy-demanding process in eukaryotes which requires the concerted action of all three RNA polymerases. In RNA polymerase II transcription, the general transcription factor TFIIH is recruited by TFIIE to the initiation site of protein-coding genes. Distinct mutations in TFIIH and TFIIE give rise to the degenerative disorder trichothiodystrophy (TTD). Here, we uncovered an unexpected role of TFIIE in ribosomal RNA synthesis by RNA polymerase I. With high resolution microscopy we detected TFIIE in the nucleolus where TFIIE binds to actively transcribed rDNA. Mutations in TFIIE affects gene-occupancy of RNA polymerase I, rRNA maturation, ribosomal assembly and performance. In consequence, the elevated translational error rate with imbalanced protein synthesis and turnover results in an increase in heat-sensitive proteins. Collectively, mutations in TFIIE-due to impaired ribosomal biogenesis and translational accuracy-lead to a loss of protein homeostasis (proteostasis) which can partly explain the clinical phenotype in TTD.


Asunto(s)
Nucléolo Celular/genética , Regulación de la Expresión Génica , Biogénesis de Organelos , Factor de Transcripción TFIIH/genética , Factores de Transcripción TFII/genética , Síndromes de Tricotiodistrofia/genética , Línea Celular Transformada , Nucléolo Celular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Genes Reporteros , Calor , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Biosíntesis de Proteínas , Estabilidad Proteica , Proteostasis/genética , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Factor de Transcripción TFIIH/metabolismo , Factores de Transcripción TFII/deficiencia , Transcripción Genética , Síndromes de Tricotiodistrofia/metabolismo , Síndromes de Tricotiodistrofia/patología
4.
Nucleic Acids Res ; 49(19): 10911-10930, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34581821

RESUMEN

CSA and CSB proteins are key players in transcription-coupled nucleotide excision repair (TC-NER) pathway that removes UV-induced DNA lesions from the transcribed strands of expressed genes. Additionally, CS proteins play relevant but still elusive roles in other cellular pathways whose alteration may explain neurodegeneration and progeroid features in Cockayne syndrome (CS). Here we identify a CS-containing chromatin-associated protein complex that modulates rRNA transcription. Besides RNA polymerase I (RNAP1) and specific ribosomal proteins (RPs), the complex includes ferrochelatase (FECH), a well-known mitochondrial enzyme whose deficiency causes erythropoietic protoporphyria (EPP). Impairment of either CSA or FECH functionality leads to reduced RNAP1 occupancy on rDNA promoter that is associated to reduced 47S pre-rRNA transcription. In addition, reduced FECH expression leads to an abnormal accumulation of 18S rRNA that in primary dermal fibroblasts from CS and EPP patients results in opposed rRNA amounts. After cell irradiation with UV light, CSA triggers the dissociation of the CSA-FECH-CSB-RNAP1-RPs complex from the chromatin while it stabilizes its binding to FECH. Besides disclosing a function for FECH within nucleoli, this study sheds light on the still unknown mechanisms through which CSA modulates rRNA transcription.


Asunto(s)
Síndrome de Cockayne/genética , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Ferroquelatasa/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Polimerasa I/genética , ARN Ribosómico/genética , Factores de Transcripción/genética , Línea Celular Transformada , Supervivencia Celular , Inmunoprecipitación de Cromatina , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patología , Daño del ADN , ADN Helicasas/metabolismo , Reparación del ADN/efectos de la radiación , Enzimas Reparadoras del ADN/metabolismo , Ferroquelatasa/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Regulación de la Expresión Génica , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Polimerasa I/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Rayos Ultravioleta
5.
Nucleic Acids Res ; 40(2): 650-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21965540

RESUMEN

TFIIH is a multisubunit factor essential for transcription initiation and promoter escape of RNA polymerase II and for the opening of damaged DNA double strands in nucleotide excision repair (NER). In this study, we have analyzed at which step of the transcription cycle TFIIH is essential for transcription by RNA polymerase I. We demonstrate that TFIIH associates with the rDNA promoter and gene-internal sequences and leaves the rDNA promoter in a complex with RNA polymerase I after start of transcription. Moreover, mutations in the TFIIH subunits XPB and XPD found in Cockayne syndrome impair the interaction of TFIIH with the rDNA, but do not influence initiation complex formation or promoter escape of RNA polymerase I, but preclude the productivity of the enzyme by reducing transcription elongation in vivo and in vitro. Our results implicate that reduced RNA polymerase I transcription elongation and ribosomal stress could be one factor contributing to the Cockayne syndrome phenotype.


Asunto(s)
ARN Polimerasa I/metabolismo , Factor de Transcripción TFIIH/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Células Cultivadas , Síndrome de Cockayne/genética , ADN Helicasas/genética , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Inmunoprecipitación , Mutación , Regiones Promotoras Genéticas , Factor de Transcripción TFIIH/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/genética
7.
Int J Cancer ; 132(9): 2032-43, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23023397

RESUMEN

Telomerase is activated in the majority of invasive breast cancers, but the time point of telomerase activation during mammary carcinogenesis is not clear. We have recently presented a transgenic mouse model to study human telomerase reverse transcriptase (TERT) gene expression in vivo (hTERTp-lacZ). In the present study, hTERTp-lacZxWAP-T bitransgenic mice were generated to analyze the mechanisms responsible for human and mouse TERT upregulation during tumor progression in vivo. We found that telomerase activity and TERT expression were consistently upregulated in SV40-induced invasive mammary tumors compared to normal and hyperplastic tissues and ductal carcinoma in situ (DCIS). Human and mouse TERT genes are regulated similarly in the breast tissue, involving the CEBP transcription factors. Loss of CEBP-α and induction of CEBP-ß expression correlated well with the activation of TERT expression in mouse mammary tumors. Transfection of CEBP-α into human or murine cells resulted in TERT repression, whereas knockdown of CEBP-α in primary human mammary epithelial cells resulted in reactivation of endogenous TERT expression and telomerase activity. Conversely, ectopic expression of CEBP-ß activated endogenous TERT gene expression. Moreover, ChIP and EMSA experiments revealed binding of CEBP-α and CEBP-ß to human TERT-promoter. This is the first evidence indicating that CEBP-α and CEBP-ß are involved in TERT gene regulation during carcinogenesis.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Transformación Celular Neoplásica/patología , Neoplasias Mamarias Experimentales/patología , Proteínas de la Leche/genética , Regiones Promotoras Genéticas/genética , Telomerasa/genética , Animales , Western Blotting , Proteínas Potenciadoras de Unión a CCAAT/genética , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Técnicas para Inmunoenzimas , Luciferasas/metabolismo , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Telomerasa/metabolismo , Activación Transcripcional , Células Tumorales Cultivadas
8.
Cells ; 12(14)2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37508541

RESUMEN

Mutations in a broad variety of genes can provoke the severe childhood disorder trichothiodystrophy (TTD) that is classified as a DNA repair disease or a transcription syndrome of RNA polymerase II. In an attempt to identify the common underlying pathomechanism of TTD we performed a knockout/knockdown of the two unrelated TTD factors TTDN1 and RNF113A and investigated the consequences on ribosomal biogenesis and performance. Interestingly, interference with these TTD factors created a nearly uniform impact on RNA polymerase I transcription with downregulation of UBF, disturbed rRNA processing and reduction of the backbone of the small ribosomal subunit rRNA 18S. This was accompanied by a reduced quality of decoding in protein translation and the accumulation of misfolded and carbonylated proteins, indicating a loss of protein homeostasis (proteostasis). As the loss of proteostasis by the ribosome has been identified in the other forms of TTD, here we postulate that ribosomal dysfunction is a common underlying pathomechanism of TTD.


Asunto(s)
Síndromes de Tricotiodistrofia , Humanos , Niño , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Mutación/genética , ARN Polimerasa I/metabolismo , Proteínas/metabolismo , Proteínas de Unión al ADN/metabolismo
9.
Front Mol Neurosci ; 16: 1280546, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125008

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disease caused by a trinucleotide (CAG) repeat expansion in the ATXN1 gene. It is characterized by the presence of polyglutamine (polyQ) intranuclear inclusion bodies (IIBs) within affected neurons. In order to investigate the impact of polyQ IIBs in SCA1 pathogenesis, we generated a novel protein aggregation model by inducible overexpression of the mutant ATXN1(Q82) isoform in human neuroblastoma SH-SY5Y cells. Moreover, we developed a simple and reproducible protocol for the efficient isolation of insoluble IIBs. Biophysical characterization showed that polyQ IIBs are enriched in RNA molecules which were further identified by next-generation sequencing. Finally, a protein interaction network analysis indicated that sequestration of essential RNA transcripts within ATXN1(Q82) IIBs may affect the ribosome resulting in error-prone protein synthesis and global proteome instability. These findings provide novel insights into the molecular pathogenesis of SCA1, highlighting the role of polyQ IIBs and their impact on critical cellular processes.

10.
Cancers (Basel) ; 14(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35565334

RESUMEN

Aberrant replication stress (RS) is a source of genome instability and has serious implications for cell survival and tumourigenesis. Therefore, the detection of RS and the identification of the underlying molecular mechanisms are crucial for the understanding of tumourigenesis. Currently, three protein markers-p33-phosphorylated replication protein A2 (pRPA2), γ-phosphorylated H2AX (γ-H2AX), and Tumor Protein P53 Binding Protein 1 (53BP1)-are frequently used to detect RS. However, to our knowledge, there is no report that compares their suitability for the detection of different sources of RS. Therefore, in this study, we evaluate the suitability of pRPA2, γ-H2AX, and 53BP1 for the detection of RS caused by different sources of RS. In addition, we examine their suitability as markers of the telomerase-mediated alleviation of RS. For these purposes, we use here telomerase-negative human fibroblasts (BJ) and their telomerase-immortalized counterparts (BJ-hTERT). Replication stress was induced by the ectopic expression of the oncogenic RAS mutant RASG12V (OI-RS), by the knockdown of ploidy-control genes ORP3 or MAD2 (AI-RS), and by treatment with hydrogen peroxide (ROS-induced RS). The level of RS was determined by immunofluorescence staining for pRPA2, γ-H2AX, and 53BP1. Evaluation of the staining results revealed that pRPA2- and γ-H2AX provide a significant and reliable assessment of OI-RS and AI-RS compared to 53BP1. On the other hand, 53BP1 and pRPA2 proved to be superior to γ-H2AX for the evaluation of ROS-induced RS. Moreover, the data showed that among the tested markers, pRPA2 is best suited to evaluate the telomerase-mediated suppression of all three types of RS. In summary, the data indicate that the choice of marker is important for the evaluation of RS activated through different conditions.

11.
Am J Pathol ; 176(1): 246-58, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20008129

RESUMEN

Allergic contact dermatitis is a T cell-mediated immune response, which in its relapsing chronic form is of high socioeconomic impact. The phosphoglycoprotein osteopontin (OPN) has chemotactic and Th1 cytokine functions and in various models is essential for robust T cell-mediated immunity. Here we demonstrate that OPN is abundantly expressed by both effector T cells and keratinocytes in allergic contact dermatitis lesions. T cells from nickel-allergic donors secrete high levels of OPN following antigen-specific stimulation. OPN may substitute for missing IFN-gamma secretion in T effector cells because low IFN-gamma-producing T cell clones secrete high levels of OPN, and OPN down-modulates their interleukin-4 expression. Furthermore, interferon-gamma from T effector cells augments OPN in allergic contact dermatitis by inducing OPN in keratinocytes, which in turn polarizes dendritic cells and attracts inflammatory cells. In the murine contact hypersensitivity (CHS) model for allergic contact dermatitis, OPN is strongly induced in antigen-specific proliferating T cells, and OPN null mice display a reduced chronic CHS inflammatory response due to a decreased influx of effector T cells. Importantly, because of its function for chronic allergic contact dermatitis, OPN may well be a therapeutic target, because anti-OPN antibody treatment in part suppresses established chronic CHS.


Asunto(s)
Dermatitis Alérgica por Contacto/inmunología , Epítopos/inmunología , Níquel/inmunología , Osteopontina/metabolismo , Animales , Anticuerpos/inmunología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Proliferación Celular/efectos de los fármacos , Enfermedad Crónica , Células Clonales , Dermatitis Alérgica por Contacto/sangre , Dermatitis Alérgica por Contacto/patología , Femenino , Humanos , Interferón gamma/farmacología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Modelos Inmunológicos , Níquel/efectos adversos , Osteopontina/sangre , Osteopontina/genética , Fenotipo , Receptores Inmunológicos/metabolismo , Donantes de Tejidos
12.
Nat Cell Biol ; 6(12): 1165-72, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15558034

RESUMEN

The presence of actin and nuclear myosin I (NMI) in the nucleus suggests a role for these motor proteins in nuclear functions. We have investigated the role of actin and nuclear myosin I (NMI) in the transcription of ribosomal RNA genes (rDNA). Both proteins are associated with rDNA and are required for RNA polymerase I (Pol I) transcription. Microinjection of antibodies against actin or NMI, as well as short interfering RNA-mediated depletion of NMI, decreased Pol I transcription in vivo, whereas overexpression of NMI augmented pre-rRNA synthesis. In vitro, recombinant NMI activated Pol I transcription, and antibodies to NMI or actin inhibited Pol I transcription both on naked DNA and pre-assembled chromatin templates. Whereas actin associated with Pol I, NMI bound to Pol I through the transcription-initiation factor TIF-IA. The association with Pol I requires phosphorylation of TIF-IA at Ser 649 by RSK kinase, indicating a role for NMI in the growth-dependent regulation of rRNA synthesis.


Asunto(s)
Actinas/metabolismo , Núcleo Celular/metabolismo , Miosina Tipo I/metabolismo , ARN Polimerasa I/biosíntesis , ARN Ribosómico/biosíntesis , Transcripción Genética/genética , Anticuerpos/farmacología , Línea Celular , Línea Celular Tumoral , Núcleo Celular/genética , ADN Ribosómico/genética , Humanos , Proteínas del Complejo de Iniciación de Transcripción Pol1 , Unión Proteica/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Interferencia de ARN , ARN Polimerasa I/genética , ARN Ribosómico/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Quinasas S6 Ribosómicas , Serina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Cells ; 10(7)2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203326

RESUMEN

Cockayne syndrome (CS) is a developmental disorder with symptoms that are typical for the aging body, including subcutaneous fat loss, alopecia, and cataracts. Here, we show that in the cells of CS patients, RNA polymerase I transcription and the processing of the pre-rRNA are disturbed, leading to an accumulation of the 18S-E intermediate. The mature 18S rRNA level is reduced, and isolated ribosomes lack specific ribosomal proteins of the small 40S subunit. Ribosomal proteins are susceptible to unfolding and the CS cell proteome is heat-sensitive, indicating misfolded proteins and an error-prone translation process in CS cells. Pharmaceutical chaperones restored impaired cellular proliferation. Therefore, we provide evidence for severe protein synthesis malfunction, which together with a loss of proteostasis constitutes the underlying pathophysiology in CS.


Asunto(s)
Síndrome de Cockayne/genética , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Mutación/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Pliegue de Proteína , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Factores de Transcripción/genética , Proliferación Celular , Síndrome de Cockayne/patología , Calor , Humanos , Estabilidad Proteica , ARN Polimerasa I/genética , Procesamiento Postranscripcional del ARN/genética , ARN Ribosómico/genética , Transcripción Genética
14.
Leukemia ; 34(5): 1253-1265, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31768018

RESUMEN

MicroRNAs (miRNAs) are commonly deregulated in acute myeloid leukemia (AML), affecting critical genes not only through direct targeting, but also through modulation of downstream effectors. Homeobox (Hox) genes balance self-renewal, proliferation, cell death, and differentiation in many tissues and aberrant Hox gene expression can create a predisposition to leukemogenesis in hematopoietic cells. However, possible linkages between the regulatory pathways of Hox genes and miRNAs are not yet fully resolved. We identified miR-708 to be upregulated in Hoxa9/Meis1 AML inducing cell lines as well as in AML patients. We further showed Meis1 directly targeting miR-708 and modulating its expression through epigenetic transcriptional regulation. CRISPR/Cas9 mediated knockout of miR-708 in Hoxa9/Meis1 cells delayed disease onset in vivo, demonstrating for the first time a pro-leukemic contribution of miR-708 in this context. Overexpression of miR-708 however strongly impeded Hoxa9 mediated transformation and homing capacity in vivo through modulation of adhesion factors and induction of myeloid differentiation. Taken together, we reveal miR-708, a putative tumor suppressor miRNA and direct target of Meis1, as a potent antagonist of the Hoxa9 phenotype but an effector of transformation in Hoxa9/Meis1. This unexpected finding highlights the yet unexplored role of miRNAs as indirect regulators of the Hox program during normal and aberrant hematopoiesis.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Leucemia Mieloide Aguda/patología , MicroARNs/genética , Células Mieloides/patología , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Animales , Apoptosis , Sistemas CRISPR-Cas , Diferenciación Celular , Proliferación Celular , Femenino , Hematopoyesis , Proteínas de Homeodominio/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ratones , Ratones Endogámicos C57BL , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Células Mieloides/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Células Tumorales Cultivadas
15.
Biochem Biophys Res Commun ; 380(3): 695-8, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19285024

RESUMEN

We have characterized a novel transcriptional activity from HeLa cells that is required for ribosomal gene transcription by RNA polymerase I. This activity has a native molecular mass of 16 kDa and does not bind to conventional chromatographic resins. Single-round and immobilized-template experiments revealed that initiation complex formation is independent of the novel activity. Functional studies showed that it stimulates the transition from initiation to elongation, promoter escape. Thus the novel activity does not resemble the mouse initiation/elongation factor TIF-IC but is a true novel entity.


Asunto(s)
Regiones Promotoras Genéticas/genética , ARN Polimerasa I/metabolismo , Transcripción Genética , Animales , Células HeLa , Humanos , Ratones
16.
Cells ; 8(6)2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31167386

RESUMEN

The nucleolus organizes around the sites of transcription by RNA polymerase I (RNA Pol I). rDNA transcription by this enzyme is the key step of ribosome biogenesis and most of the assembly and maturation processes of the ribosome occur co-transcriptionally. Therefore, disturbances in rRNA transcription and processing translate to ribosomal malfunction. Nucleolar malfunction has recently been described in the classical progeria of childhood, Hutchinson-Gilford syndrome (HGPS), which is characterized by severe signs of premature aging, including atherosclerosis, alopecia, and osteoporosis. A deregulated ribosomal biogenesis with enlarged nucleoli is not only characteristic for HGPS patients, but it is also found in the fibroblasts of "normal" aging individuals. Cockayne syndrome (CS) is also characterized by signs of premature aging, including the loss of subcutaneous fat, alopecia, and cataracts. It has been shown that all genes in which a mutation causes CS, are involved in rDNA transcription by RNA Pol I. A disturbed ribosomal biogenesis affects mitochondria and translates into ribosomes with a reduced translational fidelity that causes endoplasmic reticulum (ER) stress and apoptosis. Therefore, it is speculated that disease-causing disturbances in the process of ribosomal biogenesis may be more common than hitherto anticipated.


Asunto(s)
Nucléolo Celular/metabolismo , Progeria/patología , Ribosomas/metabolismo , Envejecimiento Prematuro , Nucléolo Celular/genética , Niño , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patología , Estrés del Retículo Endoplásmico , Humanos , Mitocondrias/metabolismo , Progeria/genética , Progeria/metabolismo , ARN Polimerasa I/metabolismo , Ribosomas/genética
17.
Free Radic Biol Med ; 45(5): 636-44, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18538675

RESUMEN

Exposure of human fibroblasts to 8-methoxypsoralen plus ultraviolet-A irradiation (PUVA) results in stress-induced cellular senescence in fibroblasts. We here studied the role of the antioxidant defense system in the accumulation of reactive oxygen species (ROS) and the effect of the antioxidants alpha-tocopherol, N-acetylcysteine, and alpha-lipoic acid on PUVA-induced cellular senescence. PUVA treatment induced an immediate and increasing generation of intracellular ROS. Supplementation of PUVA-treated fibroblasts with alpha-tocopherol (alpha-Toc), N-acetylcysteine (NAC), or alpha-lipoic acid (alpha-LA) abrogated the increased ROS generation and rescued fibroblasts from the ROS-dependent changes into the cellular senescence phenotype, such as cytoplasmic enlargement, enhanced expression of senescence-associated-beta-galactosidase and matrix-metalloproteinase-1, hallmarks of photoaging and intrinsic aging. PUVA treatment disrupted the integrity of cellular membranes and impaired homeostasis and function of the cellular antioxidant system with a significant decrease in glutathione and hydrogen peroxide-detoxifying enzymes activities. Supplementation with NAC, alpha-LA, and alpha-Toc counteracted these changes. Our data provide causal evidence that (i) oxidative stress due to an imbalance in the overall cellular antioxidant capacity contributes to the induction and maintenance of the PUVA-induced fibroblast senescence and that (ii) low molecular antioxidants protect effectively against these deleterious alterations.


Asunto(s)
Antioxidantes/farmacología , Senescencia Celular/efectos de los fármacos , Senescencia Celular/efectos de la radiación , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Células Cultivadas , Niño , Preescolar , Fibroblastos , Glutatión/metabolismo , Humanos , Masculino , Fenotipo , Especies Reactivas de Oxígeno/metabolismo
18.
Cell Rep ; 23(6): 1612-1619, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29742419

RESUMEN

Retarded growth and neurodegeneration are hallmarks of the premature aging disease Cockayne syndrome (CS). Cockayne syndrome proteins take part in the key step of ribosomal biogenesis, transcription of RNA polymerase I. Here, we identify a mechanism originating from a disturbed RNA polymerase I transcription that impacts translational fidelity of the ribosomes and consequently produces misfolded proteins. In cells from CS patients, the misfolded proteins are oxidized by the elevated reactive oxygen species (ROS) and provoke an unfolded protein response that represses RNA polymerase I transcription. This pathomechanism can be disrupted by the addition of pharmacological chaperones, suggesting a treatment strategy for CS. Additionally, this loss of proteostasis was not observed in mouse models of CS.


Asunto(s)
Síndrome de Cockayne/patología , Proteostasis , Animales , Línea Celular , Síndrome de Cockayne/genética , Estrés del Retículo Endoplásmico , Humanos , Ratones , Mutación/genética , Estrés Oxidativo , Biosíntesis de Proteínas , Pliegue de Proteína , ARN Polimerasa I/genética , Especies Reactivas de Oxígeno/metabolismo , Transcripción Genética , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/patología
20.
PLoS One ; 12(6): e0179843, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28636660

RESUMEN

The nucleolus has long been considered to be a pure ribosome factory. However, over the last two decades it became clear that the nucleolus is involved in numerous other functions besides ribosome biogenesis. Our experiments indicate that the activity of RNA polymerase I (Pol I) transcription monitors the integrity of the DNA and influences the response to nucleolar stress as well as the rate of survival. Cells with a repressed ribosomal DNA (rDNA) transcription activity showed an increased and prolonged p53 stabilisation after UVC-irradiation. Furthermore, p53 stabilisation after inhibition and especially after UVC-irradiation might be due to abrogation of the HDM2-p53 degradation pathway by ribosomal proteins (RPs). Apoptosis mediated by highly activated p53 is a typical hallmark of Cockayne syndrome cells and transcriptional abnormalities and the following activation of the RP-HDM2-p53 pathway would be a possible explanation.


Asunto(s)
ARN Polimerasa I/metabolismo , Transcripción Genética/efectos de la radiación , Rayos Ultravioleta , Apoptosis/efectos de la radiación , Línea Celular , Células HCT116 , Humanos , Proteínas del Complejo de Iniciación de Transcripción Pol1/antagonistas & inhibidores , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Estabilidad Proteica/efectos de la radiación , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Interferencia de ARN , ARN Polimerasa I/genética , ARN Ribosómico/metabolismo , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA