Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 183(3): 943-956, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32345769

RESUMEN

Several soybean (Glycine max) germplasms, such as Nishiyamahitashi 98-5 (NH), have an intense seaweed-like flavor after cooking because of their high seed S-methylmethionine (SMM) content. In this study, we compared the amounts of amino acids in the phloem sap, leaves, pods, and seeds between NH and the common soybean cultivar Fukuyutaka. This revealed a comparably higher SMM content alongside a higher free Met content in NH seeds, suggesting that the SMM-hyperaccumulation phenotype of NH soybean was related to Met metabolism in seeds. To investigate the molecular mechanism behind SMM hyperaccumulation, we examined the phenotype-associated gene locus in NH plants. Analyses of the quantitative trait loci in segregated offspring of the cross between NH and the common soybean cultivar Williams 82 indicated that one locus on chromosome 10 explains 71.4% of SMM hyperaccumulation. Subsequent fine-mapping revealed that a transposon insertion into the intron of a gene, Glyma.10g172700, is associated with the SMM-hyperaccumulation phenotype. The Glyma.10g172700-encoded recombinant protein showed Met-γ-lyase (MGL) activity in vitro, and the transposon-insertion mutation in NH efficiently suppressed Glyma.10g172700 expression in developing seeds. Exogenous administration of Met to sections of developing soybean seeds resulted in transient increases in Met levels, followed by continuous increases in SMM concentrations, which was likely caused by Met methyltransferase activity in the seeds. Accordingly, we propose that the SMM-hyperaccumulation phenotype is caused by suppressed MGL expression in developing soybean seeds, resulting in transient accumulation of Met, which is converted into SMM to avoid the harmful effects caused by excess free Met.


Asunto(s)
Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Glycine max/genética , Glycine max/metabolismo , Metionina/genética , Metionina/metabolismo , Semillas/genética , Semillas/metabolismo , Genes de Plantas , Variación Genética , Genotipo , Fenotipo , Hojas de la Planta/metabolismo , Sitios de Carácter Cuantitativo , Vitamina U/metabolismo
2.
Biosci Biotechnol Biochem ; 85(5): 1275-1282, 2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33710298

RESUMEN

Streptomyces incarnatus NRRL8089 produces the antiviral, antifungal, antiprotozoal nucleoside antibiotic sinefungin. To enhance sinefungin production, multiple mutations were introduced to the rpoB gene encoding RNA polymerase (RNAP) ß-subunit at the target residues, D447, S453, H457, and R460. Sparse regression analysis using elastic-net lasso-ridge penalties on previously reported H457X mutations identified a numeric parameter set, which suggested that H457R/Y/F may cause production enhancement. H457R/R460C mutation successfully enhanced the sinefungin production by 3-fold, while other groups of mutations, such as D447G/R460C or D447G/H457Y, made moderate or even negative effects. To identify why the rif cluster residues have diverse effects on sinefungin production, an RNAP/DNA/mRNA complex model was constructed by homology modeling and molecular dynamics simulation. The 4 residues were located near the mRNA strand. Density functional theory-based calculation suggested that D447, H457, and R460 are in direct contact with ribonucleotide, and partially positive charges are induced by negatively charged chain of mRNA.


Asunto(s)
Adenosina/análogos & derivados , Antibacterianos/biosíntesis , Proteínas Bacterianas/genética , ARN Polimerasas Dirigidas por ADN/genética , Mutación , Streptomyces/genética , Adenosina/biosíntesis , Adenosina/química , Sustitución de Aminoácidos , Antibacterianos/química , Antifúngicos/química , Antifúngicos/metabolismo , Antimaláricos/química , Antimaláricos/metabolismo , Antiprotozoarios/química , Antiprotozoarios/metabolismo , Antivirales/química , Antivirales/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , ADN/química , ADN/genética , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Teoría Funcional de la Densidad , Regulación Bacteriana de la Expresión Génica , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Streptomyces/enzimología
3.
Biosci Biotechnol Biochem ; 84(5): 927-935, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31959065

RESUMEN

For many years, clinical studies have suggested that blood levels of l-methionine and L-homocysteine correlate with health status or homocystinuria/hypermethioninemia. l-Methionine in a solution containing 0%, 10%, or 20% human serum was detected in 10-200 µM using l-methionine decarboxylase (MetDC). Spike and recovery tests showed that the enzymatic assay could accurately and reproducibly determine the increases in l-methionine in serum samples. These results suggest that our enzymatic method using MetDC is useful for primary screening of hypermethioninemia or homocystinuria based on serum l-methionine concentration. Additionally, we confirmed that l-methionine (100 nmol) in solution was degraded to less than the detection limit by incubation at 37ºC for 10 min using 2 U of MetDC. Therefore, l-homocysteine in serum samples can be detected with equivalent sensitivity using l-methionine γ-lyase (MGL), in solutions that either did not contain l-methionine or contained l-methionine preincubated with MetDC.Abbreviations: DTT: dithiothreitol; IPTG: isopropyl-ß-d-thiogalactopyranoside; KPB: potassium phosphate buffer; MBTH: 3-methyl-2-benzothiazolinonehydrazone; mdc: the gene coding l-methionine decarboxylase; MetDC: l-methionine decarboxylase; mgl: the gene coding l-methionine γ-lyase; MGL: l-methionine γ-lyase; PLP: pyridoxal 5'-phosphate.


Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Carboxiliasas/metabolismo , Pruebas de Enzimas/métodos , Homocisteína/sangre , Metionina/sangre , Pseudomonas putida/enzimología , Streptomyces/enzimología , Errores Innatos del Metabolismo de los Aminoácidos/sangre , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Escherichia coli/genética , Escherichia coli/metabolismo , Glicina N-Metiltransferasa/sangre , Glicina N-Metiltransferasa/deficiencia , Homocistinuria/sangre , Homocistinuria/diagnóstico , Humanos , Plásmidos/genética , Pseudomonas putida/genética , Espectrofotometría/métodos , Streptomyces/genética
4.
Anal Biochem ; 580: 56-61, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31163123

RESUMEN

Here, a conventional chiral amino acid analysis method using high-performance liquid chromatography was coupled with a sample pretreatment using l-methionine γ-lyase from Pseudomonas putida ICR 3460 for the selective analysis of l-methionine and l-tryptophan. The sample was analyzed after the degradation of l-methionine with l-methionine γ-lyase, as l-methionine coelutes with l-tryptophan under the standard chiral amino acid analytical conditions used for precolumn derivatization with o-phthalaldehyde and N-acetyl-l-cysteine. The l-tryptophan in the sample was then eluted as a clearly separated peak and analyzed further. Since the l-methionine γ-lyase did not act on l-tryptophan, we were able to calculate the l-methionine or l-tryptophan concentration based on the data obtained from 2 individual runs: the sample with and without l-methionine γ-lyase pretreatment. The concentration of l-tryptophan was calculated from the data obtained from the sample with l-methionine γ-lyase pretreatment, while the concentration of l-methionine was calculated using the following equation: l-methionine concentration = {the data from the sample without l-methionine γ-lyase pretreatment}-{the data from the sample with l-methionine γ-lyase pretreatment}. Model samples containing authentic amino acids and a fermented food sample were analyzed by our method, and the calculated concentrations of l-methionine and l-tryptophan were consistently in agreement with the theoretical values.


Asunto(s)
Liasas de Carbono-Azufre/química , Metionina/análisis , Triptófano/análisis , Pseudomonas putida/enzimología , Especificidad por Sustrato
5.
Biosci Biotechnol Biochem ; 80(10): 1970-2, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27405844

RESUMEN

Biosynthesis of selenocysteine-containing proteins requires monoselenophosphate, a selenium-donor intermediate generated by selenophosphate synthetase (Sephs). A non-radioactive assay was developed as an alternative to the standard [8-(14)C] AMP-quantifying assay. The product, AMP, was measured using a recombinant pyruvate pyrophosphate dikinase from Thermus thermophilus HB8. The KM and kcat for Sephs2-Sec60Cys were determined to be 26 µM and 0.352 min(-1), respectively.


Asunto(s)
Pruebas de Enzimas/métodos , Fosfotransferasas/metabolismo , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/metabolismo , Thermus thermophilus/enzimología , Adenosina Monofosfato/metabolismo , Humanos
6.
Biosci Biotechnol Biochem ; 80(3): 600-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26566138

RESUMEN

DL-Penicillamine, a copper-specific metal chelator, remarkably suppressed the growth of Bacillus subtilis 168 when added to a synthetic medium under Cu(2+) limitation. DNA microarray and screening of 2,602 knockout mutants showed that the zosA gene was de-repressed in the presence of 0.1% dl-penicillamine, and that the zosA mutant was sensitive to dl-penicillamine medium. The zosA mutant delayed the growth under Cu-limitation even without the chelator, and the sensitivity to dl-penicillamine was reversed by induction using 0.3 mM IPTG and the Pspac promoter inserted directly upstream of the zosA gene. Furthermore, the zosA mutant showed elevated tolerance of excessive Cu(2+) but not of excessive Zn(2+) added to LB and synthetic media. Homology modeling of the ZosA protein suggested that the protein can fold itself into essential domains for constituting a metal transporting ATPase. Our study suggests that zosA is a candidate gene involved in copper uptake.


Asunto(s)
Bacillus subtilis/genética , Cobre/metabolismo , Genes Bacterianos , Bacillus subtilis/metabolismo , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos
7.
J Infect Chemother ; 22(6): 395-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27066881

RESUMEN

We surveyed the status of community-acquired infections involving four extended-spectrum ß-lactamase (ESBL)-producing bacteria (Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Proteus mirabilis) isolated from clinical specimens from 11 social insurance hospitals in Japan in 2012. These are member hospitals of the Japan Community Healthcare Organization, an independent administrative hospital organization. The isolation rates for E. coli, K. pneumoniae, K. oxytoca, and P. mirabilis were 14.0% (165/1176), 3.3% (16/480), 3.1% (4/130), and 15.9% (17/107), respectively. The CTX-M-9 group, the most frequently detected genotype, was found in 77.0% (127/165) of E. coli and 43.8% (7/16) of K. pneumoniae isolates. Among K. oxytoca isolates, 75% (3/4) were the CTX-M-1 group, and all 17 P. mirabilis strains were the CTX-M-2 group. ESBL-producing bacteria isolation rates in each hospital ranged from 5.8% to 21.5% (median 9.5%), and the proportion of community-acquired infections among ESBL-producing bacteria isolates ranged from 1.6% to 30.8% (median 11.4%) in each hospital. Overall, the rates of ESBL-producing bacterial infection in all community-acquired infections and in all hospital infections were 10.6% (115/1081) and 10.7% (87/812), respectively. The ESBL-producing bacteria are not limited to certain regions or hospitals but are spreading in communities throughout Japan.


Asunto(s)
Infecciones Comunitarias Adquiridas/microbiología , Enterobacteriaceae/aislamiento & purificación , Hospitales Comunitarios , beta-Lactamasas/biosíntesis , Adulto , Anciano , Anciano de 80 o más Años , Niño , Dermatoglifia del ADN , Enterobacteriaceae/enzimología , Enterobacteriaceae/genética , Genotipo , Humanos , Lactante , Japón , Persona de Mediana Edad , Seguridad Social , Adulto Joven
8.
Biosci Biotechnol Biochem ; 79(7): 1130-2, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25721692

RESUMEN

Purified recombinant sorbose dehydrogenase from Sinorhizobium sp. 97507 exhibited high reactivity for 1,5-anhydro-D-glucitol (1,5-AG) and L-sorbose, but little activity for the other sugars or sugar alcohols tested. Kinetic analysis revealed that its catalytic efficiency (k(cat)/Km) for L-sorbose and 1,5-AG is 1.8 × 10(2) and 1.5 × 10(2) s(-1)·M(-1), respectively.


Asunto(s)
Deshidrogenasas de Carbohidratos/metabolismo , Desoxiglucosa/metabolismo , Sinorhizobium/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Deshidrogenasas de Carbohidratos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Sinorhizobium/genética , Sorbosa/metabolismo , Especificidad por Sustrato
9.
Biochem Biophys Res Commun ; 417(3): 951-5, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22197816

RESUMEN

Recently, we have solved the crystal structure of L-glutamate oxidase (LGOX) from Streptomyces sp. X-119-6 (PDB code: 2E1M), the substrate specificity of which is strict toward L-glutamate. By a docking simulation using L-glutamate and structure of LGOX, we selected three residues, Arg305, His312, and Trp564 as candidates of the residues associating with recognition of L-glutamate. The activity of LGOX toward L-glutamate was significantly reduced by substitution of selected residues with Ala. However, the enzyme, Arg305 of which was substituted with Ala, exhibited catalytic activity toward various L-amino acids. To investigate the role of Arg305 in substrate specificity, we constructed Arg305 variants of LGOX. In all mutants, the substrate specificity of LGOX was markedly changed by the mutation. The results of kinetics and pH dependence on activity indicate that Arg305 of LGOX is associated with the interaction of enzyme and side chain of substrate.


Asunto(s)
Aminoácido Oxidorreductasas/química , Arginina/química , Streptomyces/enzimología , Aminoácido Oxidorreductasas/genética , Arginina/genética , Catálisis , Dominio Catalítico , Concentración de Iones de Hidrógeno , Cinética , Mutación , Conformación Proteica , Especificidad por Sustrato/genética
10.
Biosci Biotechnol Biochem ; 76(7): 1275-84, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22785484

RESUMEN

Cys116, Lys240*, and Asp241* (asterisks indicate residues from the second subunit of the active dimer) at the active site of L-methionine γ-lyase of Pseudomonas putida (MGL_Pp) are highly conserved among heterologous MGLs. In a previous study, we found that substitution of Cys116 for His led to a drastic increase in activity toward L-cysteine and a decrease in that toward L-methionine. In this study, we examined some properties of the C116H mutant by kinetic analysis and 3D structural analysis. We assumed that substitution of Cys116 for His broke the original hydrogen-bond network and that this induced a significant effect of Tyr114 as a general acid catalyst, possibly due to the narrow space in the active site. The C116H mutant acquired a novel ß-elimination activity and lead a drastic conformation change in the histidine residue at position 116 by binding the substrate, suggesting that this His residue affects the reaction specificity of C116H. Furthermore, we suggest that Lys240* is important for substrate recognition and structural stability and that Asp241* is also involved in substrate specificity in the elimination reaction. Based on this, we suggest that the hydrogen-bond network among Cys116, Lys240*, and Asp241* contributes to substrate specificity that is, to L-methionine recognition at the active site in MGL_Pp.


Asunto(s)
Proteínas Bacterianas/química , Liasas de Carbono-Azufre/química , Subunidades de Proteína/química , Pseudomonas putida/enzimología , Sustitución de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Dominio Catalítico , Cisteína/química , Cisteína/metabolismo , Dimerización , Histidina/química , Histidina/metabolismo , Enlace de Hidrógeno , Cinética , Lisina/química , Lisina/metabolismo , Metionina/química , Metionina/metabolismo , Modelos Moleculares , Estructura Secundaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Pseudomonas putida/química , Pseudomonas putida/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
11.
J Biochem ; 171(4): 421-428, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-34967408

RESUMEN

Alanine racemase (EC 5.1.1.1) depends on pyridoxal 5'-phosphate and catalyses the interconversion between L- and D-Ala. The enzyme is responsible for the biosynthesis of D-Ala, which is an essential component of the peptidoglycan layer of bacterial cell walls. Phylogenetic analysis of alanine racemases demonstrated that the cyanobacterial enzyme diverged before the separation of gram-positive and gram-negative enzymes. This result is interesting considering that the peptidoglycans observed in cyanobacteria seem to combine the properties of those in both gram-negative and gram-positive bacteria. We cloned the putative alanine racemase gene (slr0823) of Synechocystis sp. PCC6803 in Escherichia coli cells, expressed and purified the enzyme protein and studied its enzymological properties. The enzymatic properties of the Synechocystis enzyme were similar to those of other gram-positive and gram-negative bacterial enzymes. Alignment of the amino acid sequences of alanine racemase enzymes revealed that the conserved tyrosine residue in the active centre of most of the gram-positive and gram-negative bacterial enzymes has been replaced with tryptophan in most of the cyanobacterial enzymes. We carried out the site-directed mutagenesis involving the corresponding residue of Synechocystis enzyme (W385) and revealed that the residue is involved in the substrate recognition by the enzyme.


Asunto(s)
Alanina Racemasa , Synechocystis , Alanina/genética , Alanina Racemasa/química , Alanina Racemasa/genética , Alanina Racemasa/metabolismo , Secuencia de Aminoácidos , Mutagénesis Sitio-Dirigida , Filogenia , Synechocystis/genética , Synechocystis/metabolismo
12.
J Biosci Bioeng ; 133(3): 213-221, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34953671

RESUMEN

l-Methionine γ-lyse (MGL), a pyridoxal 5'-phosphate-dependent enzyme, catalyzes the α,γ-elimination of l-methionine (l-Met) and l-homocysteine (l-Hcy) to produce α-keto acids, thiols, and ammonia. Previously, various mutant enzymes of Pseudomonas putida MGL (PpMGL) were prepared to identify a homocysteine (Hcy)-specific enzyme that would assist the diagnosis of homocystinuria. Among the mutat enzymes the Q349S mutant exhibited high degradation activity toward l-Hcy. In the present study, PpMGL Q349S was characterized; the results suggested that it could be applied to determine the amount of l-Hcy. Compared to the wild-type PpMGL, specific activities of the Q349S mutant with l-Hcy and l-Met were 1.5 and 0.7 times, respectively. Additionally, we confirmed that l-Hcy in plasma samples could be accurately detected using the Q349S mutant by preincubating it with cysteine desulfurase (CsdA). Furthermore, we determined the X-ray crystal structure of PpMGL Q349S l-Met or l-Hcy complexes Michaelis complex, germinal diamine, and external aldimine at 2.25-2.40 Å. These 3D structures showed that the interaction partner of the ß-hydroxyl group of Thr355 in the wild-type PpMGL was changed to the carboxyl group of the Hcy-PLP external aldimine in the Q349S mutant. The interaction of Ser349 and Arg375 was different between l-Met and l-Hcy recognition, indicating that it was important for the recognition of the carboxyl group of the substrate.


Asunto(s)
Liasas de Carbono-Azufre , Pseudomonas putida , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Homocisteína , Metionina/metabolismo , Pseudomonas putida/metabolismo , Fosfato de Piridoxal
13.
Biosci Biotechnol Biochem ; 75(3): 516-21, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21389620

RESUMEN

Mammalian thioredoxin reductases (TrxRs) contain selenium as selenocysteine (Sec) in the C-terminal redox center -Gly-Cys-Sec-Gly-OH to reduce Trx and other substrates; a Sec-to-Cys substitution in mammalian TrxR yields an almost inactive enzyme. The corresponding tetrapeptide sequence in Drosophila melanogaster TrxR (Dm-TrxR), -Ser-Cys-Cys-Ser-OH, endows the orthologous enzyme with a catalytic competence similar to mammalian selenoenzymes, but implementation of the Ser-containing tetrapeptide sequence SCCS into the mammalian enzyme does not restore the activity of the Sec-to-Cys mutant form (turnover number <2/min). MOPAC calculation suggested that the C-terminal hexapeptide Pro-Ala-Ser-Cys-Cys-Ser-OH functions as a redox center that alleviates the necessity for selenium in Dm-TrxR, and a mutant form of human lung TrxR that mimics this hexapeptide sequence showed improved catalytic turnover (17.4/min for DTNB and 13.2/min for E. coli trx) compared to the Sec-to-Cys mutant. MOPAC calculation also suggested that the dominant form of the Pro-containing hexapeptide is a C+ conformation, which perhaps has a catalytic advantage in facile reduction of the intramolecular disulfide bond between Cys497 and Cys498 by the N-terminal redox center in the neighboring subunit.


Asunto(s)
Cisteína/metabolismo , Drosophila melanogaster/genética , Proteínas Recombinantes/genética , Selenocisteína/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión/genética , Biocatálisis , Cisteína/genética , Drosophila melanogaster/enzimología , Escherichia coli , Humanos , Cinética , Pulmón/enzimología , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Oxidación-Reducción , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Selenio/metabolismo , Selenocisteína/genética , Homología de Secuencia de Aminoácido , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo
14.
Biosci Biotechnol Biochem ; 75(6): 1184-7, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21670519

RESUMEN

Selenite (SeO(3)(2-)) assimilation into a bacterial selenoprotein depends on thioredoxin (trx) reductase in Esherichia coli, but the molecular mechanism has not been elucidated. The mineral-oil overlay method made it possible to carry out anaerobic enzyme assay, which demonstrated an initial lag-phase followed by time-dependent steady NADPH consumption with a positive cooperativity toward selenite and trx. SDS-PAGE/autoradiography using (75)Se-labeled selenite as substrate revealed the formation of trx-bound selenium in the reaction mixture. The protein-bound selenium has metabolic significance in being stabilized in the divalent state, and it also produced the selenopersulfide (-S-SeH) form by the catalysis of E. coli trx reductase (TrxB).


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/enzimología , Proteínas Recombinantes/metabolismo , Radioisótopos de Selenio/metabolismo , Selenoproteínas/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/metabolismo , Anaerobiosis , Autorradiografía , Proteínas Bacterianas/genética , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Cinética , NADP/metabolismo , Oxidación-Reducción , Unión Proteica , Proteínas Recombinantes/genética , Selenoproteínas/genética , Selenito de Sodio/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética
15.
Protein Sci ; 30(5): 1044-1055, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33764624

RESUMEN

The alternation of substrate specificity expands the application range of enzymes in industrial, medical, and pharmaceutical fields. l-Glutamate oxidase (LGOX) from Streptomyces sp. X-119-6 catalyzes the oxidative deamination of l-glutamate to produce 2-ketoglutarate with ammonia and hydrogen peroxide. LGOX shows strict substrate specificity for l-glutamate. Previous studies on LGOX revealed that Arg305 in its active site recognizes the side chain of l-glutamate, and replacement of Arg305 by other amino acids drastically changes the substrate specificity of LGOX. Here we demonstrate that the R305E mutant variant of LGOX exhibits strict specificity for l-arginine. The oxidative deamination activity of LGOX to l-arginine is higher than that of l-arginine oxidase form from Pseudomonas sp. TPU 7192. X-ray crystal structure analysis revealed that the guanidino group of l-arginine is recognized not only by Glu305 but also Asp433, Trp564, and Glu617, which interact with Arg305 in wild-type LGOX. Multiple interactions by these residues provide strict specificity and high activity of LGOX R305E toward l-arginine. LGOX R305E is a thermostable and pH stable enzyme. The amount of hydrogen peroxide, which is a byproduct of oxidative deamination of l-arginine by LGOX R305E, is proportional to the concentration of l-arginine in a range from 0 to 100 µM. The linear relationship is maintained around 1 µM of l-arginine. Thus, LGOX R305E is suitable for the determination of l-arginine.


Asunto(s)
Aminoácido Oxidorreductasas , Proteínas Bacterianas , Ingeniería de Proteínas , Pseudomonas , Streptomyces , Aminoácido Oxidorreductasas/química , Aminoácido Oxidorreductasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Pseudomonas/enzimología , Pseudomonas/genética , Streptomyces/enzimología , Streptomyces/genética
16.
Protein Sci ; 30(3): 663-677, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33452696

RESUMEN

l -Methionine decarboxylase (MetDC) from Streptomyces sp. 590 is a vitamin B6 -dependent enzyme and catalyzes the non-oxidative decarboxylation of l -methionine to produce 3-methylthiopropylamine and carbon dioxide. We present here the crystal structures of the ligand-free form of MetDC and of several enzymatic reaction intermediates. Group II amino acid decarboxylases have many residues in common around the active site but the residues surrounding the side chain of the substrate differ. Based on information obtained from the crystal structure, and mutational and biochemical experiments, we propose a key role for Gln64 in determining the substrate specificity of MetDC, and for Tyr421 as the acid catalyst that participates in protonation after the decarboxylation reaction.


Asunto(s)
Proteínas Bacterianas , Carboxiliasas , Aminoácidos/química , Aminoácidos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carboxiliasas/química , Carboxiliasas/genética , Carboxiliasas/metabolismo , Dominio Catalítico/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Streptomyces/enzimología , Streptomyces/genética , Especificidad por Sustrato/genética
17.
J Struct Biol X ; 5: 100044, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33554108

RESUMEN

Harmuful proteins are usually synthesized as inactive precursors and are activated by proteolytic processing. l-Amino acid oxidase (LAAO) is a flavoenzyme that catalyzes the oxidative deamination of l-amino acid to produce a 2-oxo acid with ammonia and highly toxic hydrogen peroxide and, therefore, is expressed as a precursor. The LAAO precursor shows significant variation in size and the cleavage pattern for activation. However, the molecular mechanism of how the propeptide suppresses the enzyme activity remains unclear except for deaminating/decarboxylating Pseudomonasl-phenylalanine oxidase (PAO), which has a short N-terminal propeptide composed of 14 residues. Here we show the inactivation mechanism of the l-lysine oxidase (LysOX) precursor (prLysOX), which has a long N-terminal propeptide composed of 77 residues, based on the crystal structure at 1.97 Šresolution. The propeptide of prLysOX indirectly changes the active site structure to inhibit the enzyme activity. prLysOX retains weak enzymatic activity with strict specificity for l-lysine and shows raised activity in acidic conditions. The structures of prLysOX crystals that soaked in a solution with various concentrations of l-lysine have revealed that prLysOX can adopt two conformations; one is the inhibitory form, and the other is very similar to mature LysOX. The propeptide region of the latter form is disordered, and l-lysine is bound to the latter form. These results indicate that prLysOX uses a different strategy from PAO to suppress the enzyme activity and suggest that prLysOX can be activated quickly in response to the environmental change without proteolytic processing.

18.
Mar Biotechnol (NY) ; 22(4): 551-563, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32488507

RESUMEN

Silica cell walls of diatoms have attracted attention as a source of nanostructured functional materials and have immense potential for a variety of applications. Previous studies of silica cell wall formation have identified numerous involved proteins, but most of these proteins are species-specific and are not conserved among diatoms. However, because the basic process of diatom cell wall formation is common to all diatom species, ubiquitous proteins and molecules will reveal the mechanisms of cell wall formation. In this study, we assembled de novo transcriptomes of three diatom species, Nitzschia palea, Achnanthes kuwaitensis, and Pseudoleyanella lunata, and compared protein-coding genes of five genome-sequenced diatom species. These analyses revealed a number of diatom-specific genes that encode putative endoplasmic reticulum-targeting proteins. Significant numbers of these proteins showed homology to silicanin-1, which is a conserved diatom protein that reportedly contributes to cell wall formation. These proteins also included a previously unrecognized SET domain protein methyltransferase family that may regulate functions of cell wall formation-related proteins and long-chain polyamines. Proteomic analysis of cell wall-associated proteins in N. palea identified a protein that is also encoded by one of the diatom-specific genes. Expression analysis showed that candidate genes were upregulated in response to silicon, suggesting that these genes play roles in silica cell wall formation. These candidate genes can facilitate further investigations of silica cell wall formation in diatoms.


Asunto(s)
Pared Celular/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Transcriptoma , Pared Celular/genética , Dominios PR-SET , Proteína Metiltransferasas/metabolismo , Dióxido de Silicio/química
19.
Protein Sci ; 29(11): 2213-2225, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32894626

RESUMEN

l-Lysine oxidase (LysOX) is a FAD-dependent homodimeric enzyme that catalyzes the oxidative deamination of l-lysine to produce α-keto-ε-aminocaproate with ammonia and hydrogen peroxide. LysOX shows strict substrate specificity for l-lysine, whereas most l-amino acid oxidases (LAAOs) exhibit broad substrate specificity for l-amino acids. Previous studies of LysOX showed that overall structural similarity to the well-studied snake venom LAAOs. However, the molecular mechanism of strict specificity for l-lysine was still unclear. We here determined the structure of LysOX in complex with l-lysine at 1.7 Å resolution. The structure revealed that the hydrogen bonding network formed by D212, D315, and A440 with two water molecules is responsible for the recognition of the side chain amino group. In addition, a narrow hole formed by five hydrophobic residues in the active site contributes to strict substrate specificity. Mutation studies demonstrated that D212 and D315 are essential for l-lysine recognition, and the D212A/D315A double mutant LysOX showed different substrate specificity from LysOX. Moreover, the structural basis of the substrate specificity change has also been revealed by the structural analysis of the mutant variant and its substrate complexes. These results clearly explain the molecular mechanism of the strict specificity of LysOX and suggest that LysOX is a potential candidate for a template to design LAAOs specific to other l-amino acids.


Asunto(s)
Proteínas Fúngicas/química , Hypocreales/enzimología , Oxigenasas de Función Mixta/química , Sustitución de Aminoácidos , Cristalografía por Rayos X , Proteínas Fúngicas/genética , Hypocreales/genética , Lisina/química , Oxigenasas de Función Mixta/genética , Mutación Missense , Relación Estructura-Actividad , Especificidad por Sustrato
20.
Mol Endocrinol ; 22(5): 1141-53, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18218727

RESUMEN

We have previously shown that mice lacking the TSH receptor (TSHR) exhibit osteoporosis due to enhanced osteoclast formation. The fact that this enhancement is not observed in double-null mice of TSHR and TNFalpha suggests that TNFalpha overexpression in osteoclast progenitors (macrophages) may be involved. It is unknown how TNFalpha expression is regulated in osteoclastogenesis. Here, we describe a receptor activator for nuclear factor-kappaB ligand (RANKL)-responsive sequence (CCG AGA CAG AGG TGT AGG GCC), spanning from -157 to -137 bp of the 5'-flanking region of the TNFalpha gene, which functions as a cis-acting regulatory element. We further show how RANKL treatment stimulates the high-mobility group box proteins (HMGB) HMGB1 and HMGB2 to bind the RANKL-responsive sequence and up-regulates TNFalpha transcription. Exogenous HMGB elicits the expression of cytokines, including TNFalpha, as well as osteoclast formation. Conversely, TSH inhibits the expression of HMGB and TNFalpha and the formation of osteoclasts. These results suggest that HMGB play a pivotal role in osteoclastogenesis. We also show a direct correlation between the expression of HMGB and TNFalpha and osteoclast formation in TSHR-null mice and TNFalpha-null mice. Taken together, we conclude that HMGB and TNFalpha play critical roles in the regulation of osteoclastogenesis and the remodeling of bone.


Asunto(s)
ADN/genética , Proteínas HMGB/fisiología , Osteoclastos/metabolismo , Factor de Necrosis Tumoral alfa/genética , Animales , Western Blotting , Línea Celular , Inmunoprecipitación de Cromatina , ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Humanos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas/genética , Ligando RANK/farmacología , Transcripción Genética/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA