Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(16): e2315123121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38602915

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by stenosis and occlusions of small pulmonary arteries, leading to elevated pulmonary arterial pressure and right heart failure. Although accumulating evidence shows the importance of interleukin (IL)-6 in the pathogenesis of PAH, the target cells of IL-6 are poorly understood. Using mice harboring the floxed allele of gp130, a subunit of the IL-6 receptor, we found substantial Cre recombination in all hematopoietic cell lineages from the primitive hematopoietic stem cell level in SM22α-Cre mice. We also revealed that a CD4+ cell-specific gp130 deletion ameliorated the phenotype of hypoxia-induced pulmonary hypertension in mice. Disruption of IL-6 signaling via deletion of gp130 in CD4+ T cells inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) and suppressed the hypoxia-induced increase in T helper 17 cells. To further examine the role of IL-6/gp130 signaling in more severe PH models, we developed Il6 knockout (KO) rats using the CRISPR/Cas9 system and showed that IL-6 deficiency could improve the pathophysiology in hypoxia-, monocrotaline-, and Sugen5416/hypoxia (SuHx)-induced rat PH models. Phosphorylation of STAT3 in CD4+ cells was also observed around the vascular lesions in the lungs of the SuHx rat model, but not in Il6 KO rats. Blockade of IL-6 signaling had an additive effect on conventional PAH therapeutics, such as endothelin receptor antagonist (macitentan) and soluble guanylyl cyclase stimulator (BAY41-2272). These findings suggest that IL-6/gp130 signaling in CD4+ cells plays a critical role in the pathogenesis of PAH.


Asunto(s)
Hipertensión Pulmonar , Interleucina-6 , Animales , Ratones , Ratas , Linfocitos T CD4-Positivos/patología , Receptor gp130 de Citocinas/genética , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Hipoxia/patología , Interleucina-6/genética , Arteria Pulmonar/patología
2.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836606

RESUMEN

Pulmonary arterial hypertension (PAH) is a devastating disease characterized by arteriopathy in the small to medium-sized distal pulmonary arteries, often accompanied by infiltration of inflammatory cells. Aryl hydrocarbon receptor (AHR), a nuclear receptor/transcription factor, detoxifies xenobiotics and regulates the differentiation and function of various immune cells. However, the role of AHR in the pathogenesis of PAH is largely unknown. Here, we explore the role of AHR in the pathogenesis of PAH. AHR agonistic activity in serum was significantly higher in PAH patients than in healthy volunteers and was associated with poor prognosis of PAH. Sprague-Dawley rats treated with the potent endogenous AHR agonist, 6-formylindolo[3,2-b]carbazole, in combination with hypoxia develop severe pulmonary hypertension (PH) with plexiform-like lesions, whereas Sprague-Dawley rats treated with the potent vascular endothelial growth factor receptor 2 inhibitors did not. Ahr-knockout (Ahr-/- ) rats generated using the CRISPR/Cas9 system did not develop PH in the SU5416/hypoxia model. A diet containing Qing-Dai, a Chinese herbal drug, in combination with hypoxia led to development of PH in Ahr+/+ rats, but not in Ahr-/- rats. RNA-seq analysis, chromatin immunoprecipitation (ChIP)-seq analysis, immunohistochemical analysis, and bone marrow transplantation experiments show that activation of several inflammatory signaling pathways was up-regulated in endothelial cells and peripheral blood mononuclear cells, which led to infiltration of CD4+ IL-21+ T cells and MRC1+ macrophages into vascular lesions in an AHR-dependent manner. Taken together, AHR plays crucial roles in the development and progression of PAH, and the AHR-signaling pathway represents a promising therapeutic target for PAH.


Asunto(s)
Hipertensión Arterial Pulmonar/patología , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Carbazoles/efectos adversos , Progresión de la Enfermedad , Medicamentos Herbarios Chinos/efectos adversos , Células Endoteliales/metabolismo , Humanos , Inflamación , Leucocitos Mononucleares/metabolismo , Pulmón/metabolismo , Pulmón/patología , Macrófagos/metabolismo , Hipertensión Arterial Pulmonar/sangre , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/metabolismo , Ratas , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/sangre , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal , Linfocitos T/metabolismo
3.
Circulation ; 146(13): 1006-1022, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35997026

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is a type of pulmonary hypertension (PH) characterized by obliterative pulmonary vascular remodeling, resulting in right-sided heart failure. Although the pathogenesis of PAH is not fully understood, inflammatory responses and cytokines have been shown to be associated with PAH, in particular, with connective tissue disease-PAH. In this sense, Regnase-1, an RNase that regulates mRNAs encoding genes related to immune reactions, was investigated in relation to the pathogenesis of PH. METHODS: We first examined the expression levels of ZC3H12A (encoding Regnase-1) in peripheral blood mononuclear cells from patients with PH classified under various types of PH, searching for an association between the ZC3H12A expression and clinical features. We then generated mice lacking Regnase-1 in myeloid cells, including alveolar macrophages, and examined right ventricular systolic pressures and histological changes in the lung. We further performed a comprehensive analysis of the transcriptome of alveolar macrophages and pulmonary arteries to identify genes regulated by Regnase-1 in alveolar macrophages. RESULTS: ZC3H12A expression in peripheral blood mononuclear cells was inversely correlated with the prognosis and severity of disease in patients with PH, in particular, in connective tissue disease-PAH. The critical role of Regnase-1 in controlling PAH was also reinforced by the analysis of mice lacking Regnase-1 in alveolar macrophages. These mice spontaneously developed severe PAH, characterized by the elevated right ventricular systolic pressures and irreversible pulmonary vascular remodeling, which recapitulated the pathology of patients with PAH. Transcriptomic analysis of alveolar macrophages and pulmonary arteries of these PAH mice revealed that Il6, Il1b, and Pdgfa/b are potential targets of Regnase-1 in alveolar macrophages in the regulation of PAH. The inhibition of IL-6 (interleukin-6) by an anti-IL-6 receptor antibody or platelet-derived growth factor by imatinib but not IL-1ß (interleukin-1ß) by anakinra, ameliorated the pathogenesis of PAH. CONCLUSIONS: Regnase-1 maintains lung innate immune homeostasis through the control of IL-6 and platelet-derived growth factor in alveolar macrophages, thereby suppressing the development of PAH in mice. Furthermore, the decreased expression of Regnase-1 in various types of PH implies its involvement in PH pathogenesis and may serve as a disease biomarker, and a therapeutic target for PH as well.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Animales , Biomarcadores , Citocinas , Hipertensión Pulmonar Primaria Familiar , Hipertensión Pulmonar/metabolismo , Mesilato de Imatinib , Proteína Antagonista del Receptor de Interleucina 1 , Interleucina-1beta , Interleucina-6/genética , Interleucina-6/metabolismo , Leucocitos Mononucleares/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Ratones , Factor de Crecimiento Derivado de Plaquetas , Arteria Pulmonar , Estabilidad del ARN , Ribonucleasas/genética , Ribonucleasas/metabolismo , Remodelación Vascular
4.
Am J Physiol Heart Circ Physiol ; 320(3): H1021-H1036, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33481696

RESUMEN

Pulmonary hypertension (PH) causes cardiac hypertrophy in the right ventricle (RV) and eventually leads to RV failure due to persistently elevated ventricular afterload. We hypothesized that the mechanical stress on the RV associated with increased afterload impairs vasodilator function of the right coronary artery (RCA) in PH. Coronary vascular response was assessed using microangiography with synchrotron radiation (SR) in two well-established PH rat models, monocrotaline injection or the combined exposure to chronic hypoxia and vascular endothelial growth factor receptor blockade with Su5416 (SuHx model). In the SuHx model, the effect of the treatment with the nonselective endothelin-1 receptor antagonist (ERA), macitentan, was also examined. Myocardial viability was determined in SuHx model rats, using 18F-FDG Positron emission tomography (PET) and magnetic resonance imaging (MRI). Endothelium-dependent and endothelium-independent vasodilator responses were significantly attenuated in the medium and small arteries of severe PH rats. ERA treatment significantly improved RCA vascular function compared with the untreated group. ERA treatment improved both the decrease in ejection fraction and the increased glucose uptake, and reduced RV remodeling. In addition, the upregulation of inflammatory genes in the RV was almost suppressed by ERA treatment. We found impairment of vasodilator responses in the RCA of severe PH rat models. Endothelin-1 activation in the RCA plays a major role in impaired vascular function in PH rats and is partially restored by ERA treatment. Treatment of PH with ERA may improve RV function in part by indirectly attenuating right heart afterload and in part by associated improvements in right coronary endothelial function.NEW & NOTEWORTHY We demonstrated for the first time the impairment of vascular responses in the right coronary artery (RCA) of the dysfunctional right heart in pulmonary hypertensive rats in vivo. Treatment with an endothelin-1 receptor antagonist ameliorated vascular dysfunction in the RCA, enabled tissue remodeling of the right heart, and improved cardiac function. Our results suggest that impaired RCA function might also contribute to the early progression to heart failure in patients with severe pulmonary arterial hypertension (PAH). The endothelium of the coronary vasculature might be considered as a potential target in treatments to prevent heart failure in severe patients with PAH.


Asunto(s)
Angiografía Coronaria , Vasos Coronarios/diagnóstico por imagen , Hipertrofia Ventricular Derecha/diagnóstico por imagen , Hipertensión Arterial Pulmonar/diagnóstico por imagen , Sincrotrones , Vasodilatación , Disfunción Ventricular Derecha/diagnóstico por imagen , Animales , Antihipertensivos/farmacología , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/metabolismo , Vasos Coronarios/fisiopatología , Modelos Animales de Enfermedad , Antagonistas de los Receptores de Endotelina/farmacología , Endotelina-1/genética , Endotelina-1/metabolismo , Hipertrofia Ventricular Derecha/tratamiento farmacológico , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/fisiopatología , Hipoxia/complicaciones , Indoles , Monocrotalina , Valor Predictivo de las Pruebas , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/fisiopatología , Pirimidinas/farmacología , Pirroles , Ratas Sprague-Dawley , Índice de Severidad de la Enfermedad , Sulfonamidas/farmacología , Vasodilatación/efectos de los fármacos , Disfunción Ventricular Derecha/tratamiento farmacológico , Disfunción Ventricular Derecha/metabolismo , Disfunción Ventricular Derecha/fisiopatología , Función Ventricular Derecha , Remodelación Ventricular
5.
Clin Sci (Lond) ; 135(2): 327-346, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33480422

RESUMEN

A high salt intake exacerbates insulin resistance, evoking hypertension due to systemic perivascular inflammation, oxidative-nitrosative stress and endothelial dysfunction. Angiotensin-converting enzyme inhibitor (ACEi) and angiotensin receptor blockers (ARBs) have been shown to abolish inflammation and redox stress but only partially restore endothelial function in mesenteric vessels. We investigated whether sympatho-adrenal overactivation evokes coronary vascular dysfunction when a high salt intake is combined with insulin resistance in male Goto-Kakizaki (GK) and Wistar rats treated with two different classes of ß-blocker or vehicle, utilising synchrotron-based microangiography in vivo. Further, we examined if chronic carvedilol (CAR) treatment preserves nitric oxide (NO)-mediated coronary dilation more than metoprolol (MET). A high salt diet (6% NaCl w/w) exacerbated coronary microvessel endothelial dysfunction and NO-resistance in vehicle-treated GK rats while Wistar rats showed modest impairment. Microvascular dysfunction was associated with elevated expression of myocardial endothelin, inducible NO synthase (NOS) protein and 3-nitrotyrosine (3-NT). Both CAR and MET reduced basal coronary perfusion but restored microvessel endothelium-dependent and -independent dilation indicating a role for sympatho-adrenal overactivation in vehicle-treated rats. While MET treatment reduced myocardial nitrates, only MET treatment completely restored microvessel dilation to dobutamine (DOB) stimulation in the absence of NO and prostanoids (combined inhibition), indicating that MET restored the coronary flow reserve attributable to endothelium-derived hyperpolarisation (EDH). In conclusion, sympatho-adrenal overactivation caused by high salt intake and insulin resistance evoked coronary microvessel endothelial dysfunction and diminished NO sensitivity, which were restored by MET and CAR treatment in spite of ongoing inflammation and oxidative-nitrosative stress presumably caused by uninhibited renin-angiotensin-aldosterone system (RAAS) overactivation.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Carvedilol/farmacología , Endotelio Vascular/efectos de los fármacos , Resistencia a la Insulina , Antagonistas de Receptores Adrenérgicos beta 1/farmacología , Animales , Angiografía Coronaria , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/fisiopatología , Modelos Animales de Enfermedad , Hipertensión/fisiopatología , Masculino , Metoprolol/farmacología , Óxido Nítrico/metabolismo , Ratas , Ratas Wistar , Cloruro de Sodio Dietético/administración & dosificación
6.
Circ J ; 84(7): 1163-1172, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32522898

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH), particularly connective tissue disease-associated PAH (CTD-PAH), is a progressive disease and novel therapeutic agents based on the specific molecular pathogenesis are desired. In the pathogenesis of CTD-PAH, inflammation, immune cell abnormality, and fibrosis play important roles. However, the existing mouse pulmonary hypertension (PH) models do not reflect these features enough. The relationship between inflammation and hypoxia is still unclear.Methods and Results:Intraperitoneal administration of pristane, a kind of mineral oil, and exposure to chronic hypoxia were combined, and this model is referred to as pristane/hypoxia (PriHx) mice. Hemodynamic and histological analyses showed that the PriHx mice showed a more severe phenotype of PH than pristane or hypoxia alone. Immunohistological and flow cytometric analyses revealed infiltration of immune cells, including hemosiderin-laden macrophages and activated CD4+helper T lymphocytes in the lungs of PriHx mice. Pristane administration exacerbated lung fibrosis and elevated the expression of fibrosis-related genes. Inflammation-related genes such asIl6andCxcl2were also upregulated in the lungs of PriHx mice, and interleukin (IL)-6 blockade by monoclonal anti-IL-6 receptor antibody MR16-1 ameliorated PH of PriHx mice. CONCLUSIONS: A PriHx model, a novel mouse model of PH reflecting the pathological features of CTD-PAH, was developed through a combination of pristane administration and exposure to chronic hypoxia.


Asunto(s)
Hipoxia/complicaciones , Pulmón/patología , Neumonía/etiología , Hipertensión Arterial Pulmonar/etiología , Fibrosis Pulmonar/etiología , Terpenos , Animales , Quimiocina CXCL6/genética , Quimiocina CXCL6/metabolismo , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Hemodinámica , Interleucina-6/genética , Interleucina-6/metabolismo , Pulmón/metabolismo , Ratones Endogámicos C57BL , Fenotipo , Neumonía/metabolismo , Neumonía/patología , Neumonía/fisiopatología , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Hipertensión Arterial Pulmonar/fisiopatología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/fisiopatología , Índice de Severidad de la Enfermedad , Transducción de Señal , Regulación hacia Arriba
7.
Proc Natl Acad Sci U S A ; 112(20): E2677-86, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25941359

RESUMEN

IL-6 is a multifunctional proinflammatory cytokine that is elevated in the serum of patients with pulmonary arterial hypertension (PAH) and can predict the survival of patients with idiopathic PAH (IPAH). Previous animal experiments and clinical human studies indicate that IL-6 is important in PAH; however, the molecular mechanisms of IL-6-mediated pathogenesis of PAH have been elusive. Here we identified IL-21 as a downstream target of IL-6 signaling in PAH. First, we found that IL-6 blockade by the monoclonal anti-IL-6 receptor antibody, MR16-1, ameliorated hypoxia-induced pulmonary hypertension (HPH) and prevented the hypoxia-induced accumulation of Th17 cells and M2 macrophages in the lungs. Consistently, the expression levels of IL-17 and IL-21 genes, one of the signature genes for Th17 cells, were significantly up-regulated after hypoxia exposure in the lungs of mice treated with control antibody but not in the lungs of mice treated with MR16-1. Although IL-17 blockade with an anti-IL-17A neutralizing antibody had no effect on HPH, IL-21 receptor-deficient mice were resistant to HPH and exhibited no significant accumulation of M2 macrophages in the lungs. In accordance with these findings, IL-21 promoted the polarization of primary alveolar macrophages toward the M2 phenotype. Of note, significantly enhanced expressions of IL-21 and M2 macrophage markers were detected in the lungs of IPAH patients who underwent lung transplantation. Collectively, these findings suggest that IL-21 promotes PAH in association with M2 macrophage polarization, downstream of IL-6-signaling. The IL-6/IL-21-signaling axis may be a potential target for treating PAH.


Asunto(s)
Hipertensión Pulmonar/fisiopatología , Interleucina-6/metabolismo , Interleucinas/metabolismo , Transducción de Señal/fisiología , Remodelación Vascular/fisiología , Análisis de Varianza , Animales , Anticuerpos Monoclonales/inmunología , Presión Sanguínea , Western Blotting , Pesos y Medidas Corporales , Cartilla de ADN/genética , Citometría de Flujo , Humanos , Inmunohistoquímica , Interleucina-6/sangre , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Interleucina-21/deficiencia
8.
Am J Physiol Heart Circ Physiol ; 312(1): H60-H67, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27793854

RESUMEN

The aim of this study was to examine the accumulation of serotonin (5-HT) and degradation of 5-HT taken up into cells in the ischemic region during myocardial ischemia-reperfusion. Using microdialysis technique in anesthetized rats, we monitored myocardial interstitial levels of 5-HT and its metabolite produced by monoamine oxidase (MAO), 5-hydroxyindole acetic acid (5-HIAA), during 30-min coronary occlusion followed by 45-min reperfusion, and investigated the effects of local administration of the MAO inhibitor pargyline and the 5-HT uptake inhibitor fluoxetine. In the vehicle group, the dialysate 5-HT concentration increased from 1.3 ± 0.2 nM at baseline to 29.6 ± 2.8 nM at 22.5-30 min of occlusion, but the dialysate 5-HIAA concentration did not change from baseline (9.9 ± 1.1 nM). Upon reperfusion, the dialysate 5-HT concentration increased further to a peak (34.2 ± 4.2 nM) at 0-7.5 min and then declined. The dialysate 5-HIAA concentration increased to 31.9 ± 5.2 nM at 7.5-15 min of reperfusion and maintained this high level until 45 min. Pargyline markedly suppressed the increase in dialysate 5-HIAA concentration after reperfusion and increased the averaged dialysate 5-HT concentration during the reperfusion period. Fluoxetine suppressed the increase in dialysate 5-HT concentration during occlusion but did not change dialysate 5-HT or 5-HIAA concentration after reperfusion. During ischemia, 5-HT secreted from ischemic tissues accumulates but 5-HT degradation by MAO is suppressed. After reperfusion, degradation of 5-HT taken up into cells is enhanced and contributes to the clearance of accumulated 5-HT. This degradation following cellular uptake is dependent on MAO activity but not the fluoxetine-sensitive uptake transporter. NEW & NOTEWORTHY: By monitoring myocardial interstitial levels of 5-HT and its metabolite, 5-hydroxyindole acetic acid, we investigated 5-HT kinetics during myocardial ischemia-reperfusion. 5-HT accumulates but 5-HT degradation is suppressed during ischemia. After reperfusion, 5-HT degradation is enhanced and this degradation is dependent on monoamine oxidase activity but not fluoxetine-sensitive uptake transporter.


Asunto(s)
Oclusión Coronaria/metabolismo , Ácido Hidroxiindolacético/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Serotonina/metabolismo , Animales , Fluoxetina/farmacología , Masculino , Microdiálisis , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Pargilina/farmacología , Ratas , Ratas Wistar , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
9.
J Synchrotron Radiat ; 24(Pt 5): 1039-1047, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28862627

RESUMEN

Tumor vasculature is characterized by morphological and functional abnormalities. However, analysis of the dynamics in blood flow is still challenging because of limited spatial and temporal resolution. Synchrotron radiation (SR) microangiography above the K-edge of the iodine contrast agent can provide high-contrast imaging of microvessels in time orders of milliseconds. In this study, mice bearing the human breast cancer cell lines MDAMB231 and NOTCH4 overexpression in MDAMB231 (MDAMB231NOTCH4+) and normal mice were assessed using SR microangiography. NOTCH is transmembrane protein that has crucial roles for vasculogenesis, angiogenesis and tumorigenesis, and NOTCH4 is considered to be a cause of high-flow arteriovenous shunting. A subgroup of mice received intravenous eribulin treatment, which is known to improve intratumor core circulation (MDAMB231_eribulin). Microvessel branches from approximately 200 µm to less than 20 µm in diameter were observed within the same visual field. The mean transition time (MTT) was measured as a dynamic parameter and quantitative analysis was performed. MTT in MDAMB231 was longer than that in normal tissue, and MDAMB231NOTCH4+ showed shorter MTT [5.0 ± 1.4 s, 3.6 ± 1.0 s and 3.6 ± 1.1 s (mean ± standard deviation), respectively]. After treatment, average MTT was correlated to tumor volume (r = 0.999) in MDAMB231_eribulin, while in contrast there was no correlation in MDAMB231 (r = -0.026). These changes in MTT profile are considered to be driven by the modulation of intratumoral circulation dynamics. These results demonstrate that a SR microangiography approach enables quantitative analysis of morphological and dynamic characteristics of tumor vasculature in vivo. Further studies will reveal new findings concerning vessel function in tumors.


Asunto(s)
Angiografía/métodos , Neoplasias de la Mama/irrigación sanguínea , Hemodinámica , Sincrotrones , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/fisiopatología , Femenino , Xenoinjertos , Humanos , Ratones , Receptor Notch4/metabolismo
10.
Am J Physiol Regul Integr Comp Physiol ; 310(10): R926-33, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26984893

RESUMEN

Homeostasis of intracellular pH (pHi) has a crucial role for the maintenance of cellular function. Several membrane transporters such as lactate/H(+) cotransporter (MCT), Na(+)/H(+) exchange transporter (NHE), and Na(+)/HCO3 (-) cotransporter (NBC) are thought to contribute to pHi regulation. However, the relative importance of each of these membrane transporters to the in vivo recovery from the low pHi condition is unknown. Using an in vivo bioimaging model, we pharmacologically inhibited each transporter separately and all transporters together and then evaluated the pHi recovery profiles following imposition of a discrete H(+) challenge loaded into single muscle fibers by microinjection. The intact spinotrapezius muscle of adult male Wistar rats (n = 72) was exteriorized and loaded with the fluorescent probe 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-acetoxymethyl ester (10 µM). A single muscle fiber was then loaded with low-pH solution [piperazine-N,N'-bis(2-ethanesulfonic acid) buffer, pH 6.5, ∼2.33 × 10(-3) µl] by microinjection over 3 s. The rats were divided into groups for the following treatments: 1) no inhibitor (CONT), 2) MCT inhibition (by α-Cyano-4-hydroxyciannamic acid; 4 mM), 3) NHE inhibition (by ethylisopropyl amiloride; 0.5 mM), 4) NBC inhibition (by DIDS; 1 mM), and 5) MCT, NHE, and NBC inhibition (All blockade). The fluorescence ratio (F500 nm/F445 nm) was determined from images captured during 1 min (60 images/min) and at 5, 10, 15, and 20 min after injection. The pHi at 1-2 s after injection significantly decreased from resting pHi (ΔpHi = -0.73 ± 0.03) in CONT. The recovery response profile was biphasic, with an initial rapid and close-to-exponential pHi increase (time constant, τ: 60.0 ± 7.9 s). This initial rapid profile was not affected by any pharmacological blockade but was significantly delayed by carbonic anhydrase inhibition. In contrast, the secondary, more gradual, return toward baseline that restored CONT pHi to 84.2% of baseline was unimpeded by MCT, NHE, and NBC blockade separately but abolished by All blockade (ΔpHi = -0.60 ± 0.07, 72.8% initial pHi, P < 0.05 vs. CONT). After injection of H(+) into, or superfusion onto, an adjacent fiber pHi of the surrounding fibers decreased progressively for the 20-min observation period (∼7.0, P < 0.05 vs. preinjection/superfusion). In conclusion, these results support that, after an imposed H(+) load, the MCT, NHE, and NBC transporters are not involved in the initial rapid phase of pHi recovery. In contrast, the gradual recovery phase was abolished by inhibiting all three membrane transporter systems simultaneously. The alteration of pHi in surrounding fibers suggest that H(+) uptake by neighboring fibers can help alleviate the pH consequences of myocyte H(+) exudation.


Asunto(s)
Fibras Musculares Esqueléticas/fisiología , Acetazolamida , Animales , Tampones (Química) , Anhidrasas Carbónicas/farmacología , Proteínas Portadoras/antagonistas & inhibidores , Dieta , Fluoresceínas , Concentración de Iones de Hidrógeno , Masculino , Protones , Ratas , Ratas Wistar
11.
Am J Physiol Regul Integr Comp Physiol ; 311(2): R426-39, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27252472

RESUMEN

Chronic intermittent hypoxia (IH) induces oxidative stress and inflammation, which impair vascular endothelial function. Long-term insulin resistance also leads to endothelial dysfunction. We determined, in vivo, whether the effects of chronic IH and insulin resistance on endothelial function augment each other. Male 12-wk-old Goto-Kakizaki (GK) and Wistar control rats were subjected to normoxia or chronic IH (90-s N2, 5% O2 at nadir, 90-s air, 20 cycles/h, 8 h/day) for 4 wk. Coronary endothelial function was assessed using microangiography with synchrotron radiation. Imaging was performed at baseline, during infusion of acetylcholine (ACh, 5 µg·kg(-1)·min(-1)) and then sodium nitroprusside (SNP, 5 µg·kg(-1)·min(-1)), after blockade of both nitric oxide (NO) synthase (NOS) with N(ω)-nitro-l-arginine methyl ester (l-NAME, 50 mg/kg) and cyclooxygenase (COX, meclofenamate, 3 mg/kg), and during subsequent ACh. In GK rats, coronary vasodilatation in response to ACh and SNP was blunted compared with Wistar rats, and responses to ACh were abolished after blockade. In Wistar rats, IH blunted the ability of ACh or SNP to increase the number of visible vessels. In GK rats exposed to IH, neither ACh nor SNP were able to increase visible vessel number or caliber, and blockade resulted in marked vasoconstriction. Our findings indicate that IH augments the deleterious effects of insulin resistance on coronary endothelial function. They appear to increase the dependence of the coronary microcirculation on NO and/or vasodilator prostanoids, and greatly blunt the residual vasodilation in response to ACh after blockade of NOS/COX, presumably mediated by endothelium-derived hyperpolarizing factors.


Asunto(s)
Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/fisiopatología , Hipoxia/complicaciones , Hipoxia/fisiopatología , Resistencia a la Insulina , Microcirculación , Animales , Enfermedad Crónica , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Circulación Coronaria , Progresión de la Enfermedad , Hipoxia/diagnóstico por imagen , Masculino , Ratas , Ratas Wistar
12.
Am J Physiol Regul Integr Comp Physiol ; 309(12): R1512-20, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26468263

RESUMEN

Hyperbaric oxygen (HBO) is a major therapeutic treatment for ischemic ulcerations that perforate skin and underlying muscle in diabetic patients. These lesions do not heal effectively, in part, because of the hypoxic microvascular O2 partial pressures (PmvO2 ) resulting from diabetes-induced cardiovascular dysfunction, which alters the dynamic balance between O2 delivery (Q̇o2) and utilization (V̇o2) rates. We tested the hypothesis that HBO in diabetic muscle would exacerbate the hyperoxic PmvO2 dynamics due, in part, to a reduction or slowing of the cardiovascular, sympathetic nervous, and respiratory system responses to acute HBO exposure. Adult male Wistar rats were divided randomly into diabetic (DIA: streptozotocin ip) and healthy (control) groups. A small animal hyperbaric chamber was pressurized with oxygen (100% O2) to 3.0 atmospheres absolute (ATA) at 0.2 ATA/min. Phosphorescence quenching techniques were used to measure PmvO2 in tibialis anterior muscle of anesthetized rats during HBO. Lumbar sympathetic nerve activity (LSNA), heart rate (HR), and respiratory rate (RR) were measured electrophysiologically. During the normobaric hyperoxia and HBO, DIA tibialis anterior PmvO2 increased faster (mean response time, CONT 78 ± 8, DIA 55 ± 8 s, P < 0.05) than CONT. Subsequently, PmvO2 remained elevated at similar levels in CONT and DIA muscles until normobaric normoxic recovery where the DIA PmvO2 retained its hyperoxic level longer than CONT. Sympathetic nervous system and cardiac and respiratory responses to HBO were slower in DIA vs. CONT. Specifically the mean response times for RR (CONT: 6 ± 1 s, DIA: 29 ± 4 s, P < 0.05), HR (CONT: 16 ± 1 s, DIA: 45 ± 5 s, P < 0.05), and LSNA (CONT: 140 ± 16 s, DIA: 247 ± 34 s, P < 0.05) were greater following HBO onset in DIA than CONT. HBO treatment increases tibialis anterior muscle PmvO2 more rapidly and for a longer duration in DIA than CONT, but not to a greater level. Whereas respiratory, cardiovascular, and LSNA responses to HBO are profoundly slowed in DIA, only the cardiovascular arm (via HR) may contribute to the muscle vascular incompetence and these faster PmvO2 kinetics.


Asunto(s)
Angiopatías Diabéticas/terapia , Oxigenoterapia Hiperbárica , Microcirculación , Microvasos/fisiopatología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Consumo de Oxígeno , Oxígeno/sangre , Animales , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/fisiopatología , Angiopatías Diabéticas/sangre , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/fisiopatología , Frecuencia Cardíaca , Hiperoxia/sangre , Hiperoxia/fisiopatología , Cinética , Vértebras Lumbares/inervación , Masculino , Neovascularización Fisiológica , Presión Parcial , Ratas Wistar , Frecuencia Respiratoria , Sistema Nervioso Simpático/fisiopatología , Cicatrización de Heridas
13.
Cardiovasc Diabetol ; 14: 92, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26194354

RESUMEN

BACKGROUND: Impaired actin-myosin cross-bridge (CB) dynamics correlate with impaired left ventricular (LV) function in early diabetic cardiomyopathy (DCM). Elevated expression and activity of Rho kinase (ROCK) contributes to the development of DCM. ROCK targets several sarcomeric proteins including myosin light chain 2, myosin binding protein-C (MyBP-C), troponin I (TnI) and troponin T that all have important roles in regulating CB dynamics and contractility of the myocardium. Our aim was to examine if chronic ROCK inhibition prevents impaired CB dynamics and LV dysfunction in a rat model of early diabetes, and whether these changes are associated with changes in myofilament phosphorylation state. METHODS: Seven days post-diabetes induction (65 mg/kg ip, streptozotocin), diabetic rats received the ROCK inhibitor, fasudil (10 mg/kg/day ip) or vehicle for 14 days. Rats underwent cardiac catheterization to assess LV function simultaneous with X-ray diffraction using synchrotron radiation to assess in situ CB dynamics. RESULTS: Compared to controls, diabetic rats developed mild systolic and diastolic dysfunction, which was attenuated by fasudil. End-diastolic and systolic myosin proximity to actin filaments were significantly reduced in diabetic rats (P < 0.05). In all rats there was an inverse correlation between ROCK1 expression and the extension of myosin CB in diastole, with the lowest ROCK expression in control and fasudil-treated diabetic rats. In diabetic and fasudil-treated diabetic rats changes in relative phosphorylation of TnI and MyBP-C were not significant from controls. CONCLUSIONS: Our results demonstrate a clear role for ROCK in the development of LV dysfunction and impaired CB dynamics in early DCM.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Cardiomiopatías Diabéticas/prevención & control , Contracción Miocárdica/efectos de los fármacos , Miocardio/enzimología , Miosinas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Disfunción Ventricular Izquierda/prevención & control , Función Ventricular Izquierda/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Actinas/metabolismo , Animales , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/complicaciones , Cardiomiopatías Diabéticas/enzimología , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/fisiopatología , Masculino , Fosforilación , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Disfunción Ventricular Izquierda/enzimología , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/fisiopatología , Quinasas Asociadas a rho/metabolismo
14.
Basic Res Cardiol ; 109(5): 432, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25139633

RESUMEN

Chronic intermittent hypoxia (IH) provokes a centrally mediated increase in sympathetic nerve activity (SNA). Although this sympathetic hyperexcitation has been linked to systemic hypertension, its effect on the pulmonary vasculature is unclear. This study aimed to assess IH-mediated sympathetic excitation in modulating pulmonary vasculature tone, particularly acute hypoxia vasoconstrictor response (HPV), and the central ß-adrenergic signaling pathway for facilitating the increase in SNA. Sprague-Dawley rats were exposed to IH (cycle of 4% O2 for 90 s/air for 90 s) for 8 h/day for 6 weeks. Subsequently, rats were anesthetized and either pulmonary SNA was recorded (electrophysiology), or the pulmonary vasculature was visualized using microangiography. Pulmonary sympathetic and vascular responses to acute hypoxia were assessed before and after central ß1-adrenergic receptor blockade (Metoprolol, 200 nmol i.c.v.). Chronic IH increased baseline SNA (110% increase), and exacerbated the sympathetic response to acute hypoxia. Moreover, the magnitude of HPV in IH rats was blunted compared to control rats (e.g., 10 and 20% vasoconstriction, respectively). In only the IH rats, ß1-receptor blockade with metoprolol attenuated the hypoxia-induced increase in pSNA and exacerbated the magnitude of acute HPV, so that both sympathetic and HPV responses were similar to that of control rats. Interestingly, the expression of ß1-receptors within the brainstem was similar between both control and IH rats. These results suggest that the centrally mediated increase in SNA following IH acts to blunt the local vasoconstrictor effect of acute hypoxia, which reflects an inherent difference between vasodilator and vasoconstrictor actions of SNA in pulmonary and systemic circulations.


Asunto(s)
Hipoxia/fisiopatología , Pulmón/fisiopatología , Fenómenos Fisiológicos Respiratorios , Sistema Nervioso Simpático/fisiopatología , Angiografía/métodos , Animales , Western Blotting , Electrofisiología , Pulmón/irrigación sanguínea , Pulmón/inervación , Masculino , Ratas , Ratas Sprague-Dawley , Vasoconstricción/fisiología
15.
Am J Physiol Heart Circ Physiol ; 304(2): H206-14, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23144313

RESUMEN

Consumption of the dietary flavanol (-)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O(2) uptake (Vo(2) peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O(2) pressure (Po(2mv)) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓~5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, Vo(2) peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min(-1)·100 g(-1), P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min(-1)·100 g(-1)·mmHg(-1), P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓~16%) but did not impact resting Po(2mv) or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg(-1)·day(-1)) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats.


Asunto(s)
Catequina/farmacología , Microcirculación/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Oxígeno/sangre , Esfuerzo Físico , Administración Oral , Animales , Presión Arterial/efectos de los fármacos , Catequina/administración & dosificación , Tolerancia al Ejercicio/efectos de los fármacos , Miembro Posterior , Cinética , Masculino , Músculo Esquelético/metabolismo , Ratas , Ratas Sprague-Dawley , Flujo Sanguíneo Regional/efectos de los fármacos , Carrera , Vasodilatación/efectos de los fármacos
16.
Am J Physiol Regul Integr Comp Physiol ; 305(6): R610-8, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23883681

RESUMEN

The effects of muscle contractions on the profile of postcontraction resting intracellular Ca2+ ([Ca2+]i) accumulation in Type 1 diabetes are unclear. We tested the hypothesis that, following repeated bouts of muscle contractions, the rise in resting [Ca2+]i evident in healthy rats would be increased in diabetic rats and that these changes would be associated with a decreased cytoplasmic Ca2+ -buffering capacity. Adult male Wistar rats were divided randomly into diabetic (DIA; streptozotocin, ip) and healthy control (CONT) groups. Four weeks later, animals were anesthetized and spinotrapezius muscle contractions (10 sets of 50 contractions) were elicited by electrical stimulation (100 Hz). Ca2+ imaging was achieved using Fura-2 AM in the spinotrapezius muscle in vivo (i.e., circulation intact). The ratio (340/380 nm) was determined from fluorescence images following each set of contractions for estimation of [Ca2+]i. Also, muscle Ca2+ buffering was studied in individual myocytes microinjected with 2 mM Ca2+ solution. After muscle contractions, resting [Ca2+]i in DIA increased earlier and more rapidly than in CONT (P < 0.05 vs. precontraction). Peak [Ca2+]i in response to the Ca2+ injection was significantly higher in CONT (25.8 ± 6.0% above baseline) than DIA (10.2 ± 1.1% above baseline). Subsequently, CONT [Ca(2+)]i decreased rapidly (<15 s) to plateau 9-10% above baseline, whereas DIA remained elevated throughout the 60-s measurement window. No differences in SERCA1 and SERCA2 (Ca2+ uptake) protein levels were evident between CONT and DIA, whereas ryanodine receptor (Ca2+ release) protein level and mitochondrial oxidative enzyme activity (succinate dehydrogenase) were decreased in DIA (P < 0.05). In conclusion, diabetes impairs resting [Ca2+]i homeostasis following muscle contractions. Markedly different responses to Ca2+ injection in DIA vs. CONT suggest fundamentally deranged Ca2+ handling.


Asunto(s)
Calcio/administración & dosificación , Calcio/metabolismo , Diabetes Mellitus/fisiopatología , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/fisiopatología , Esfuerzo Físico/efectos de los fármacos , Animales , Inyecciones Intramusculares , Masculino , Imagen Molecular , Músculo Esquelético/efectos de los fármacos , Ratas , Ratas Wistar
17.
Arthritis Res Ther ; 25(1): 46, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964623

RESUMEN

BACKGROUND: Takayasu arteritis (TAK) is an autoimmune large vessel vasculitis that affects the aorta and its major branches, eventually leading to the development of aortic aneurysm and vascular stenosis or occlusion. This retrospective and prospective study aimed to investigate whether the gut dysbiosis exists in patients with TAK and to identify specific gut microorganisms related to aortic aneurysm formation/progression in TAK. METHODS: We analysed the faecal microbiome of 76 patients with TAK and 56 healthy controls (HCs) using 16S ribosomal RNA sequencing. We examined the relationship between the composition of the gut microbiota and clinical parameters. RESULTS: The patients with TAK showed an altered gut microbiota with a higher abundance of oral-derived bacteria, such as Streptococcus and Campylobacter, regardless of the disease activity, than HCs. This increase was significantly associated with the administration of a proton pump inhibitor used for preventing gastric ulcers in patients treated with aspirin and glucocorticoids. Among patients taking a proton pump inhibitor, Campylobacter was more frequently detected in those who underwent vascular surgeries and endovascular therapy for aortic dilatation than in those who did not. Among the genus of Campylobacter, Campylobacter gracilis in the gut microbiome was significantly associated with clinical events related to aortic aneurysm formation/worsening in patients with TAK. In a prospective analysis, patients with a gut microbiome positive for Campylobacter were significantly more likely to require interventions for aortic dilatation than those who were negative for Campylobacter. Furthermore, patients with TAK who were positive for C. gracilis by polymerase chain reaction showed a tendency to have severe aortic aneurysms. CONCLUSIONS: A specific increase in oral-derived Campylobacter in the gut may be a novel predictor of aortic aneurysm formation/progression in patients with TAK.


Asunto(s)
Aneurisma de la Aorta , Arteritis de Takayasu , Enfermedades Vasculares , Humanos , Arteritis de Takayasu/tratamiento farmacológico , Estudios Retrospectivos , Estudios Prospectivos , Disbiosis , Inhibidores de la Bomba de Protones/uso terapéutico , Aneurisma de la Aorta/complicaciones , Enfermedades Vasculares/complicaciones
18.
Am J Physiol Regul Integr Comp Physiol ; 299(4): R1006-12, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20631296

RESUMEN

It is commonly believed that estrogen and sex influences play significant effects in skeletal muscle damage following eccentric exercise. The mechanistic bases for this sex-specific phenomenon remain to be resolved. The muscle damage has been linked to loss of Ca(2+) homeostasis and resultant intramyocyte Ca(2+) ([Ca(2+)](i)) accumulation; therefore, we tested the hypothesis that the greater eccentric exercise-induced muscle damage in males would be associated with more pronounced [Ca(2+)](i) accumulation. The intact spinotrapezius muscle of adult Wistar rats [male, female, and ovariectomized (OVX)-to investigate the effects of estrogen] was exteriorized. Tetanic eccentric contractions (100 Hz, 700-ms duration, 20 contractions/min for a total of 10 sets of 50 contractions) were elicited by electrical stimulation during synchronized muscle stretch of 10% resting muscle length. The fluorescence ratio (F(340)/F(380) nm) was determined from images captured following each set of contractions, and fura-2 AM was used to estimate [Ca(2+)](i) and changes thereof. Following eccentric contractions, [Ca(2+)](i) increased significantly in male (42.8 ± 5.3%, P < 0.01) but not in female (9.4 ± 3.5%) rats. OVX evidenced an intermediate response (17.0 ± 1.2%) that remained significantly reduced compared with males. These results demonstrate that females maintain [Ca(2+)](i) homeostasis following novel eccentric contractions, whereas males do not, which is consistent with a role for elevated [Ca(2+)](i) in eccentric exercise-induced muscle damage. The presence of normal estrogen levels is not obligatory for the difference between the sexes.


Asunto(s)
Calcio/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Animales , Calpaína/metabolismo , Estradiol/metabolismo , Ciclo Estral/fisiología , Femenino , Procesamiento de Imagen Asistido por Computador , Isoenzimas/metabolismo , Masculino , Microscopía Fluorescente , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/metabolismo , Músculo Esquelético/lesiones , Músculo Esquelético/patología , Ovariectomía , Condicionamiento Físico Animal/fisiología , Ratas , Ratas Wistar , Caracteres Sexuales
19.
Adv Exp Med Biol ; 662: 309-15, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20204808

RESUMEN

Using a fatiguing stimulation protocol designed specifically to enhance sympathetically-mediated vasoconstrictor tone, we explored the temporal profile of the evoked vasoconstrictor response, evaluated the presence of sympatholysis, and assessed the role of alpha1-adrenergic receptor-mediated vasoconstriction on muscle performance. Spinotrapezius muscles of Wistar rats were exteriorized and stimulated tetanically (100 Hz, 4-7 V, stimulus duration 700 ms) every 3 s for 2.5 min under control and prazosin (1 muM) superfused conditions. The extent and time course of diameter changes in arterioles (2 A) and venules (2 V) were determined after each of 10 discrete sets of muscle stimulation at 5-min intervals. A significant decrease of luminal diameter was observed in arterioles after tetanic contractions at 8-10 sets (8 sets: -34.4%, 9 sets: -39.4%, 10 sets: -38.6% vs pre-contraction at each set, p < 0.01). Prazosin significantly reduced but did not abolish the contraction-induced vasoconstriction. In both conditions, there was no reduction of venules diameter observed. Tetanic contractions force at the final 10th set was significantly decreased to 29.3 +/- 11.9% from pre-fatigue conditions, while tetanic contractions with prazosin force production was maintained at 70.4 +/- 14.2% at the 10th set. We conclude that in sequential bouts of contractions there was a progressively greater degree of arteriolar (but not venular) vasoconstriction which was attenuated substantially by prazosin.


Asunto(s)
Arteriolas/fisiopatología , Contracción Muscular/fisiología , Fatiga Muscular/fisiología , Músculo Esquelético/fisiopatología , Sistema Nervioso Simpático/fisiopatología , Tetania/fisiopatología , Sistema Vasomotor/fisiopatología , Animales , Masculino , Músculo Esquelético/irrigación sanguínea , Ratas , Ratas Wistar , Factores de Tiempo
20.
Nat Commun ; 11(1): 1058, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32103002

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) is critically involved in cardiovascular physiology and pathology, and is currently clinically evaluated to treat acute lung failure. Here we show that the B38-CAP, a carboxypeptidase derived from Paenibacillus sp. B38, is an ACE2-like enzyme to decrease angiotensin II levels in mice. In protein 3D structure analysis, B38-CAP homolog shares structural similarity to mammalian ACE2 with low sequence identity. In vitro, recombinant B38-CAP protein catalyzed the conversion of angiotensin II to angiotensin 1-7, as well as other known ACE2 target peptides. Treatment with B38-CAP suppressed angiotensin II-induced hypertension, cardiac hypertrophy, and fibrosis in mice. Moreover, B38-CAP inhibited pressure overload-induced pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction in mice. Our data identify the bacterial B38-CAP as an ACE2-like carboxypeptidase, indicating that evolution has shaped a bacterial carboxypeptidase to a human ACE2-like enzyme. Bacterial engineering could be utilized to design improved protein drugs for hypertension and heart failure.


Asunto(s)
Carboxipeptidasas/farmacología , Cardiomegalia/tratamiento farmacológico , Fibrosis/tratamiento farmacológico , Hipertensión/tratamiento farmacológico , Paenibacillus/enzimología , Peptidil-Dipeptidasa A/genética , Angiotensina II/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Cardiomegalia/patología , Modelos Animales de Enfermedad , Fibrosis/patología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/prevención & control , Hipertensión/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Peptidil-Dipeptidasa A/metabolismo , Proteínas Recombinantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA