Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Genom ; 10(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38264887

RESUMEN

Phages integrated into a bacterial genome - called prophages - continuously monitor the vigour of the host bacteria to determine when to escape the genome and to protect their host from other phage infections, and they may provide genes that promote bacterial growth. Prophages are essential to almost all microbiomes, including the human microbiome. However, most human microbiome studies have focused on bacteria, ignoring free and integrated phages, so we know little about how these prophages affect the human microbiome. To address this gap in our knowledge, we compared the prophages identified in 14 987 bacterial genomes isolated from human body sites to characterize prophage DNA in the human microbiome. Here, we show that prophage DNA is ubiquitous, comprising on average 1-5 % of each bacterial genome. The prophage content per genome varies with the isolation site on the human body, the health of the human and whether the disease was symptomatic. The presence of prophages promotes bacterial growth and sculpts the microbiome. However, the disparities caused by prophages vary throughout the body.


Asunto(s)
Bacteriófagos , Microbiota , Humanos , Profagos , Genoma Bacteriano , ADN
2.
Forensic Sci Int Genet ; 72: 103087, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996566

RESUMEN

Species identification following shark-related incidents is critical for effective incident management and for collecting data to inform shark-bite mitigation strategies. Witness statements are not always reliable, and species identification is often ambiguous or missing. Alternative methods for species identification include morphological assessments of bite marks, analysis of collected teeth at the scene of the incident, and genetic approaches. However, access to appropriate collection media and robust genetic assays have limited the use of genetic technologies. Here, we present a case study that facilitated a unique opportunity to compare the effectiveness of medical gauze readily available in first-aid kits, and forensic-grade swabs in collecting genetic material for shark-species identification. Sterile medical gauze and forensic-grade swabs were used to collect transfer DNA from the bite margins on a bitten surf ski which were compared to a piece of shark tissue embedded along the bite margin. Witness accounts and the characteristics of the bite mark impressions inferred the involvement of a Carcharodon carcharias (white shark). The morphology of a tooth found on the boat that picked up the surf ski, however, suggested it belonged to an Orectolobus spp. (wobbegong). Genetic analysis of DNA transferred from the shark to the surf ski included the application of a broad-target nested PCR assay followed by Sanger sequencing, with white shark contribution to the 'total sample DNA' determined with a species-specific qPCR assay. The results of the genetic analyses were congruent between sampling methods with respect to species identification and the level of activity inferred by the donor-specific DNA contribution. These data also supported the inferences drawn from the bite mark morphology. DNA from the recovered tooth was PCR amplified with a wobbegong-specific primer pair designed for this study to corroborate the tooth's morphological identification. Following the confirmation of gauze used for sampling in the case study event, two additional isolated incidents occurred and were sampled in situ using gauze, as typically found in a first-aid kit, by external personnel. DNA extracted from these gauze samples resulted in the identification of a white shark as the donor of the DNA collected from the bite marks in both instances. This study, involving three incidents separated by time and location, represents the seminal application of gauze as a sampling media after critical human-shark interactions and strongly supports the practical implementation of these methods in the field.


Asunto(s)
Mordeduras y Picaduras , ADN , Tiburones , Tiburones/genética , Animales , ADN/genética , Humanos , Especificidad de la Especie , Manejo de Especímenes , Reacción en Cadena de la Polimerasa , Dermatoglifia del ADN , Diente/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA