RESUMEN
Endocannabinoids are natural lipid molecules whose levels are regulated by specific biosynthetic and degradative enzymes. They bind to and activate two main cannabinoid receptors type 1 (CB1) and type 2 (CB2), and together with their metabolizing enzymes form the "endocannabinoid system" (ECS). In the last years, the relevance of endocannabinoids (eCBs) as critical modulators in various aspects of male reproduction has been pointed out. Mammalian male germ cells, from mitotic to haploid stage, have a complete ECS which is modulated during spermatogenesis. Compelling evidence indicate that in the testis an appropriate "eCBs tone", associated to a balanced CB receptors signaling, is critical for spermatogenesis and for the formation of mature and fertilizing spermatozoa. Any alteration of this system negatively affects male reproduction, from germ cell differentiation to sperm functions, and might have also an impact on testicular tumours. Indeed, most of testicular tumours develop during early germ-cell development in which a maturation arrest is thought to be the first key event leading to malignant transformation. Considering the ever-growing number and complexity of the data on ECS, this review focuses on the role of cannabinoid receptors CB1 and CB2 signaling in male germ cells development from gonocyte up to mature spermatozoa and in the induction of epigenetic alterations in these cells which might be transmitted to the progeny. Furthermore, we present new evidence on their relevance in testicular cancer.
Asunto(s)
Susceptibilidad a Enfermedades , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Células Germinales y Embrionarias/etiología , Neoplasias de Células Germinales y Embrionarias/metabolismo , Receptores de Cannabinoides/metabolismo , Transducción de Señal , Neoplasias Testiculares/etiología , Neoplasias Testiculares/metabolismo , Animales , Biomarcadores , Humanos , Masculino , Neoplasias de Células Germinales y Embrionarias/patología , Reproducción , Espermatogénesis , Neoplasias Testiculares/patologíaRESUMEN
Introduction: This study examined the efficacy of a therapy based on a combination of Platelet Rich Plasma and hydroxyapatite nanoparticles in a severe clinical case involving a young Rottweiler with a complex spiral fracture of the tibia. Method: Following a worsening of the lesion after traditional surgical intervention, the subject was treated with the combined therapy. X-rays were taken at the following stages: immediately post-surgery, four weeks post-surgery, and 10 days post-treatment. Fracture gap and callus density measurements were obtained using ImageJ analysis, allowing for a detailed quantitative assessment of bone regeneration over time. Results: Post-operative radiographs indicated a clinical worsening of the fracture, revealing an increased fracture gap due to bone loss. However, significant improvements were observed ten days following the treatment, with a marked reduction in fracture gaps and increased callus density. These results demonstrated a notable acceleration in bone healing and callus formation compared to typical recovery times for similar lesions. Conclusion: The method showed potential for enhancing osteogenic regeneration, facilitating faster healing of serious orthopedic injuries compared to traditional methods.
RESUMEN
Cannabis use during pregnancy is increasing in the last few years potentially because of decreased perception of the risk of harm. Regardless, recent evidence demonstrated that prenatal cannabis exposure is associated with adverse outcomes. To date there is limited evidence of the impact of cannabis exposure during pregnancy on the reproductive health of the offspring. The biological effects of cannabis are mediated by two cannabinoid receptors, CB1 and CB2. We previously demonstrated that CB2 is highly expressed in mouse male and female fetal germ cells. In this study, we investigated the effects of prenatal exposure to a selective CB2 agonist, JWH-133, on the long-term reproductive health of male and female offspring and on the involved molecular epigenetic mechanisms. Notably, we focused on epigenetic histone modifications that can silence or activate gene expression, playing a pivotal role in cell differentiation. We reported that prenatal activation of CB2 has a sex-specific impact on germ cell development of the offspring. In male it determines a delay of germ cell differentiation coinciding with an enrichment of H3K27me3, while in female it causes a reduction of the follicles number through an increased apoptotic process not linked to modified H3K27me3 level.
Asunto(s)
Código de Histonas , Efectos Tardíos de la Exposición Prenatal , Embarazo , Humanos , Ratones , Masculino , Animales , Femenino , Histonas , Reproducción , Células Germinativas , Receptor Cannabinoide CB1RESUMEN
Cartilage injury defects in animals and humans result in the development of osteoarthritis and the progression of joint deterioration. Cell isolation from equine hyaline cartilage and evaluation of their ability to repair equine joint cartilage injuries establish a new experimental protocol for an alternative approach to osteochondral lesions treatment. Chondrocytes (CCs), isolated from the autologous cartilage of the trachea, grown in the laboratory, and subsequently arthroscopically implanted into the lesion site, were used to regenerate a chondral lesion of the carpal joint of a horse. Biopsies of the treated cartilage taken after 8 and 13 months of implantation for histological and immunohistochemical evaluation of the tissue demonstrate that the tissue was still immature 8 months after implantation, while at 13 months it was organized almost similarly to the original hyaline cartilage. Finally, a tissue perfectly comparable to native articular cartilage was detected 24 months after implantation. Histological investigations demonstrate the progressive maturation of the hyaline cartilage at the site of the lesion. The hyaline type of tracheal cartilage, used as a source of CCs, allows for the repair of joint cartilage injuries through the neosynthesis of hyaline cartilage that presents characteristics identical to the articular cartilage of the original tissue.
RESUMEN
Subchondral bone cysts in horses represent one of the main causes of lameness that can occur in different anatomical locations. The study describes the treatment in regenerative therapy of the intracystic implantation of adipose tissue mesenchymal stromal cells (AMSCs) included in platelet-rich plasma (PRP). The ability of AMSCs to differentiate in osteogenic cells was tested in vitro and in vivo. Given the aim to investigate the application of AMSCs in bone defects and orthopedic pathologies in horses, a four-year-old male thoroughbred racing horse that had never raced before was treated for lameness of the left hind leg caused by a cyst of the medial femoral condyle. The horse underwent a new surgery performed with an arthroscopic approach in which the cystic cavity was filled with AMSCs contained in the PRP. Radiographs were taken 3, 5, and 10 months after the surgery to assess the development of newly regenerated bone tissue in the gap left by the cyst. Twelve months after the operation and after six months of regular daily training, the horse did not show any symptoms of lameness and started a racing career. According to the study, the use of AMSCs and PRP suggests promising benefits for treating subchondral bone cysts.
RESUMEN
Aerobic exercise (AE) is known to produce beneficial effects on brain health by improving plasticity, connectivity, and cognitive functions, but the underlying molecular mechanisms are still limited. Neurexins (Nrxns) are a family of presynaptic cell adhesion molecules that are important in synapsis formation and maturation. In vertebrates, three-neurexin genes (NRXN1, NRXN2, and NRXN3) have been identified, each encoding for α and ß neurexins, from two independent promoters. Moreover, each Nrxns gene (1-3) has several alternative exons and produces many splice variants that bind to a large variety of postsynaptic ligands, playing a role in trans-synaptic specification, strength, and plasticity. In this study, we investigated the impact of a continuous progressive (CP) AE program on alternative splicing (AS) of Nrxns on two brain regions: frontal cortex (FC) and hippocampus. We showed that exercise promoted Nrxns1-3 AS at splice site 4 (SS4) both in α and ß isoforms, inducing a switch from exon-excluded isoforms (SS4-) to exon-included isoforms (SS4+) in FC but not in hippocampus. Additionally, we showed that the same AE program enhanced the expression level of other genes correlated with synaptic function and plasticity only in FC. Altogether, our findings demonstrated the positive effect of CP AE on FC in inducing molecular changes underlying synaptic plasticity and suggested that FC is possibly a more sensitive structure than hippocampus to show molecular changes.
RESUMEN
The cannabinoid receptor type 2 (CB2) is the peripheral receptor for cannabinoids, involved in the homeostatic control of several physiological functions. Male mitotic germ cells express a high level of CB2, whose activation promotes their differentiation in both in vitro and in vivo experiments, controlling the correct progression of spermatogenesis. However, it remains elusive if CB2 activation in spermatogonia could affect reproductive success in terms of fertility and healthy pregnancy outcomes. In this study, we explored the effects of male CB2 activation on sperm number and quality and its influence on next generation health. We show that exposure of male mice to JWH-133, a selective CB2 agonist, decreased sperm count, impaired placental development and reduced offspring growth. These defects were associated with altered DNA methylation/hydroxymethylation levels at imprinted genes in sperm and conserved in placenta. Our findings reveal that paternal selective activation of CB2 alters the sperm epigenome and compromises offspring growth. This study demonstrates, for the first time, a new role of CB2 signaling in male gametes in causing epigenetic alterations that can be transmitted to the next generation by sperm, highlighting potential risks induced by recreational cannabinoid exposure.