Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Chem Rec ; 24(3): e202300330, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38372409

RESUMEN

Electrochemical water splitting for sustainable hydrogen and oxygen production have shown enormous potentials. However, this method needs low-cost and highly active catalysts. Traditional nano catalysts, while effective, have limits since their active sites are mostly restricted to the surface and edges, leaving interior surfaces unexposed in redox reactions. Single atom catalysts (SACs), which take advantage of high atom utilization and quantum size effects, have recently become appealing electrocatalysts. Strong interaction between active sites and support in SACs have considerably improved the catalytic efficiency and long-term stability, outperforming their nano-counterparts. This review's first section examines the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER). In the next section, SACs are categorized as noble metal, non-noble metal, and bimetallic synergistic SACs. In addition, this review emphasizes developing methodologies for effective SAC design, such as mass loading optimization, electrical structure modulation, and the critical role of support materials. Finally, Carbon-based materials and metal oxides are being explored as possible supports for SACs. Importantly, for the first time, this review opens a discussion on waste-derived supports for single atom catalysts used in electrochemical reactions, providing a cost-effective dimension to this vibrant research field. The well-known design techniques discussed here may help in development of electrocatalysts for effective water splitting.

2.
Chem Rec ; 22(7): e202100230, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34757694

RESUMEN

The continuous carbon dioxide (CO2 ) gas emissions associated with fossil fuel production, valorization, and utilization are serious challenges to the global environment. Therefore, several developments of CO2 capture, separation, transportation, storage, and valorization have been explored. Consequently, we documented a comprehensive review of the most advanced strategies adopted in metal-organic frameworks (MOFs) for CO2 capture and separation. The enhancements in CO2 capture and separation are generally achieved due to the chemistry of MOFs by controlling pore window, pore size, open-metal sites, acidity, chemical doping, post or pre-synthetic modifications. The chemistry of defects engineering, breathing in MOFs, functionalization in MOFs, hydrophobicity, and topology are the salient advanced strategies, recently reported in MOFs for CO2 capture and separation. Therefore, this review summarizes MOF materials' advancement explaining different strategies and their role in the CO2 mitigations. The study also provided useful insights into key areas for further investigations.


Asunto(s)
Estructuras Metalorgánicas , Adsorción , Dióxido de Carbono , Metales
3.
J Fluoresc ; 32(2): 799-815, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35091912

RESUMEN

Ruthenium-based metal complex dyes have been employed extensively in dye-sensitized solar cells (DSSCs) as photosensitizers, but the cost and toxicity of metal complexes have promoted the development of metal-free organic dyes. The present investigation deals with the synthesis of hemicyanine and Dicyanoisophorone (DCI) based dyes adopting the D-π-A strategy, and their application on sensitization of nano-crystalline ZnO electrodes by appending the carboxyl (COOH) anchoring group as a pendant on the primary skeleton of dyes. Dyes have been characterized by UV, FTIR, and NMR spectroscopic studies. Absorption maxima (λmax) were found in the region 416-551 nm while emission wavelength (λem) was observed in the range 575-685 nm. Cyclic voltammetry and DFT calculations were used to estimate redox potential and band gap energies of dyes.

4.
Phys Chem Chem Phys ; 25(1): 428-438, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36477765

RESUMEN

Here, we introduce the synthesis and deposition of organic/inorganic composite ink on cellulose paper using a rapid ultrasonic spray deposition approach that can be incorporated as a counter electrode (CE) in flexible dye-sensitized solar cells (FDSSCs). The composite ink comprised a copper indium sulfide (CuInS2) nanostructure ink and dispersion of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) in water. Fabricated counter electrodes are biodegradable, environment-friendly, flexible, and economical and meet the requirements for sustainable green energy. To evaluate the catalytic activities and power conversion efficiencies of DSSCs, the produced CuInS2/PEDOT:PSS composite ink-based CEs were compared with PEDOT:PSS counter electrodes. Cyclic voltammetry studies found that CuInS2/PEDOT:PSS had a greater cathodic charge transfer current density (Jc) (-1.23 mA cm-2). Moreover, it was found that the potential separation values are small, which indicate a stronger catalytic activity than PEDOT:PSS counter electrodes. The observed exchange current density (J0) was 3.98 mA cm-2, while the limiting current density (Jlim) increased to 45.7 mA cm-2, indicating a fast redox diffusion rate of the CuInS2/PEDOT:PSS CE. The photovoltaic performances of CuInS2/PEDOT:PSS and PEDOT: PSS-based DSSC's were measured and determined to be 5.66% and 4.41%, respectively, while the performance of CuInS2/PEDOT:PSS FDSSC composed of cellulose paper was 1.06%.

5.
Bioprocess Biosyst Eng ; 44(1): 173-184, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32870400

RESUMEN

Freshwater sources are limited and access to clean water is an acute challenge in recent decades. The sustainable water treatments methods are need of time and water desalination is one of the most interesting technology. Most desalination technologies are required high energy input while Microbial Desalination Cells (MDCs) represent a sustainable option that has added benefit of solving the ever-increasing wastewater treatment and management problem. MDCs are a customized type of Microbial Fuel Cells (MFCs) that depend on the electric potential generated by organic media to decrease salt concentration by electro-dialysis and give an unconventional way of clean water production. In this research, various experiments were conducted to examine the desalination ability of an indigenously designed experimental setup using domestic wastewater inoculated with sewage sludge under identical conditions. The electrochemical properties of the system, comprising the polarization curve and Electrochemical Impedance Spectroscopy (EIS), were examined along with the scope of chemical oxygen demand (COD) exclusion, to distinguish the cell behaviour. Furthermore, acidic water and Phosphate Buffer Solution (PBS) were tested as potential catholytes compared to the performance of the wastewater was gauged at various salt concentrations. The maximum salt removal efficiency was 31%, power density and current density were 32 mW-m-2 and 246 mA-m-2 respectively at a salt concentration of 35 g-L-1 that decreases with a decline in salt concentration. The maximum achieved power density and current density were 32 mW-m-2 and 246 mA-m-2 respectively. The applied method has huge potential to scaleup for large scale application in coastal regions.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Aguas del Alcantarillado/microbiología , Aguas Residuales/microbiología , Purificación del Agua
6.
ACS Omega ; 9(20): 21751-21767, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799325

RESUMEN

The elimination of dyes discharged from industrial wastewater into water bodies is crucial due to its detrimental effects on aquatic organisms and potential carcinogenic impact on human health. Various methods are employed for dye removal, but they often fall short in completely degrading the dyes and generating large amounts of suspended solids. Hence, there is a critical need for an efficient process that can achieve complete dye degradation with minimal waste emission. Among traditional water treatment approaches, photocatalysis stands out as a promising method for degrading diverse toxic and organic pollutants present in wastewater. In this review, the heterogeneous photocatalysis process is well explained for dye removal. This comprehensive review not only provides insightful illumination on the classification of dyes but also thoroughly explains various dye removal methods and the underlying mechanisms of photocatalysis. Furthermore, factors which effect the activity of the photocatalysis process are also explained in detail. Likewise, we categorized the heterogeneous photocatalyst in three generations and observed their activity for dye removal. This review also addresses the challenges and effectiveness of this promising field. Its primary aim is to offer a comprehensive overview of the photocatalytic degradation of pollution and to explore its potential for further future applications.

7.
RSC Adv ; 14(18): 12742-12753, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38645523

RESUMEN

Environmental degradation and energy constraint are important risks to long-term sustainability in the modern world. Water splitting is a vital approach for environmentally friendly and sustainable energy storage, providing a clean way to produce hydrogen without pollutants. Preparing a catalyst that is active, bifunctional, and durable for water splitting is a difficult task. We addressed the difficulty by creating a bifunctional heterogeneous catalyst, MoS2/rGO, with an ideal weight percentage of 5 wt% by a hydrothermal process. The optimized sample showed exceptional electrocatalytic activity, requiring an overpotential of 242 mV and 120 mV to achieve a current density of 10 mA cm-2 in the Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER). Furthermore, our synthesized catalyst was validated for its exceptional water-splitting capacity, with the optimized sample showing low Tafel slope values of 59 mV dec-1 for HER and 171 mV dec-1 for OER. The significant OER and HER activity seen in the 5 wt% MoS2/rGO hybrid, compared to other hybrids, is due to the many catalytic active sites that aid in charge and electron transport, as well as the synergistic interaction between MoS2 and rGO.

8.
Environ Sci Pollut Res Int ; 31(15): 22790-22801, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38413521

RESUMEN

Arsenic is a highly toxic metal that causes cancer even at a low concentration and its removal from water resources is challenging. Herein, carbon extracted from waste onion bulbs is activated to cater for porosity and functionalized with magnetite (Fe3O4) nanoparticles (named MCK6) to address the challenge of As(III) removal. Synthesized MCK6 was highly mesoporous having a surface area of 208 m2/g, where magnetite nanoparticles (≤ 10 nm) are homogeneously distributed within a porous network. The developed adsorbent inherited functional groups from the biosource and magnetic property from magnetite making it ideal for removal of As(III). Further, MCK6 showed a maximum monolayer adsorption capacity (qm) of 10.2 mg/g at 298 K and pH 7. The adsorption thermodynamics delineates a non-spontaneous and endothermic reaction, where the kinetics followed pseudo 2nd order (R2 value of 0.977), while monolayer formation is explained by the Langmuir model. Moreover, MCK6 efficiently works to remove As(III) in a competitive metal ions system including Pb+2, Cd+2, and Ca+2, making it a suitable adsorbent to tackle contaminated water.


Asunto(s)
Nanopartículas de Magnetita , Contaminantes Químicos del Agua , Purificación del Agua , Agua/química , Óxido Ferrosoférrico , Porosidad , Carbono , Contaminantes Químicos del Agua/análisis , Adsorción , Cinética , Concentración de Iones de Hidrógeno , Nanopartículas de Magnetita/química
9.
J Org Chem ; 78(16): 7885-95, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23808661

RESUMEN

A gold(I)-catalyzed intermolecular formal [2 + 5] cycloaddition for the preparation of benzofused N-heterocyclic azepine products is presented. A number of benz[c]azepin-4-ol products were readily prepared in one step from easily accessible phenylpropargyl acetals and benzaldimine substrates in the presence of a gold(I) catalyst. A direct one-pot procedure from the propargyl and the respective aldehyde and amine substrates was successful as well. The reaction to access the benzofused azepines could be rationalized by a cascade reaction, including a nucleophilic benzaldimine N-attack at a highly reactive phenylpropargyl-gold(I) carbenoid complex, generated from propargyl acetal. A subsequent deauration step promotes ring closure by 1,7-electrocyclization through an intramolecular Pictet-Spengler-type reaction with the aldiminium moiety.


Asunto(s)
Benzazepinas/síntesis química , Oro/química , Benzazepinas/química , Catálisis , Ciclización , Estructura Molecular
10.
Bioorg Med Chem Lett ; 23(9): 2718-20, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23535329

RESUMEN

A novel and stereoselective synthetic route towards carba-C-nucleosides was investigated applying an enantiodivergent biooxidation strategy by two different Baeyer-Villiger monooxygenases. Within only three chemo-enzymatic steps it was possible to introduce four chiral centers starting from commercially available non-chiral starting material.


Asunto(s)
Carba-azúcares/química , Oxigenasas de Función Mixta/metabolismo , Nucleósidos/química , Catálisis , Cetonas/química , Oxigenasas de Función Mixta/genética , Nucleósidos/síntesis química , Tetróxido de Osmio/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Estereoisomerismo
11.
RSC Adv ; 13(2): 1137-1161, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36686941

RESUMEN

Worldwide demand for oil, coal, and natural gas has increased recently because of odd weather patterns and economies recovering from the pandemic. By using these fuels at an astonishing rate, their reserves are running low with each passing decade. Increased reliance on these sources is contributing significantly to both global warming and power shortage problems. It is vital to highlight and focus on using renewable energy sources for power production and storage. This review aims to discuss one of the cutting-edge technologies, metal-air batteries, which are currently being researched for energy storage applications. A battery that employs an external cathode of ambient air and an anode constructed of pure metal in which an electrolyte can be aqueous or aprotic electrolyte is termed as a metal-air battery (MAB). Due to their reportedly higher energy density, MABs are frequently hailed as the electrochemical energy storage of the future for applications like grid storage or electric car energy storage. The demand of the upcoming energy storage technologies can be satisfied by these MABs. The usage of metal-organic frameworks (MOFs) in metal-air batteries as a bi-functional electrocatalyst has been widely studied in the last decade. Metal ions or arrays bound to organic ligands to create one, two, or three-dimensional structures make up the family of molecules known as MOFs. They are a subclass of coordination polymers; metal nodes and organic linkers form different classes of these porous materials. Because of their modular design, they offer excellent synthetic tunability, enabling precise chemical and structural control that is highly desirable in electrode materials of MABs.

12.
RSC Adv ; 13(36): 24973-24987, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37614795

RESUMEN

Designing of non-noble, cost-effective, sustainable catalysts for water splitting is essential for hydrogen production. In this research work, ZIF-67, g-C3N4, and their composite (1, 3, 5, 6, 8 wt% g-C3N4@ZIF-67) are synthesized, and various techniques, XRD, FTIR, SEM, EDX and BET are used to examine their morphological properties for electrochemical water-splitting. The linkage of ZIF-67 with g-C3N4 synergistically improves the electrochemical kinetics. An appropriate integration of g-C3N4 in ZIF-67 MOF improves the charge transfer between the electrode and electrolyte and makes it a suitable option for electrochemical applications. In alkaline media, the composite of ZIF-67 MOF with g-C3N4 over a Ni-foam exhibits a superior catalyst activity for water splitting application. Significantly, the 3 wt% g-C3N4@ZIF67 composite material reveals remarkable results with low overpotential values of -176 mV@10 mA cm-2, 152 mV@10 mA cm-2 for HER and OER. The catalyst remained stable for 24 h without distortion. The 3 wt% composite also shows a commendable performance for overall water-splitting with a voltage yield of 1.34 v@10 mA cm-2. The low contact angle (54.4°) proves the electrocatalyst's hydrophilic nature. The results of electrochemical water splitting illustrated that 3 wt% g-C3N4@ZIF-67 is an electrically conductive, stable, and hydrophilic-nature catalyst and is suggested to be a promising candidate for electrochemical water-splitting application.

13.
Front Chem ; 11: 1150565, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113503

RESUMEN

The Fischer-Tropsch Synthesis (FTS) is a significant catalytic chemical reaction that produces ultra-clean fuels or chemicals with added value from a syngas mixture of CO and H2 obtained from biomass, coal, or natural gas. The presence of sulfur is not considered good for producing liquid fuels for(FTS). In this study, we reveal that the presence of sulfur in ferric sulfate Fe2(SO4)3 MOF provides the high amount, 52.50% of light hydrocarbons in the carbon chain distribution. The calcined ferric nitrate Fe(NO3)3 MOF reveals the highest 93.27% diesel production. Calcination is regarded as an essential factor in enhancing liquid fuel production. Here, we probed the calcination effect of Metal Organic Framework (MOF) on downstream application syngas to liquid fuels. The XRD results of MOF. N and P. MOF.N shows the formation of the active phase of iron carbide (Fe5C2), considered the most active phase of FTS. The scanning electron microscopy (SEM) images of iron sulfate MOF catalyst (P.MOF.S) reveals that the existence of sulfur creates pores inside the particles due to the reaction of free water molecules with the sulfur derivate. The surface functional groups of prepared MOFs and tested MOFS were analyzed by Fourier transforms infrared spectroscopy (FT-IR). The thermal stability of prepared MOFS was analyzed by Thermo gravimetric analysis (TGA). The surface areas and structural properties of the catalysts were measured by N2-Physiosorption technique.

14.
Sci Rep ; 13(1): 6954, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117234

RESUMEN

In this report we have developed different fabrication parameters to tailor the optical bandgap of graphene oxide (GO) nanosheets to make it operational candidate in electronic industry. Here we performed two ways to reduce the bandgap of GO nanosheets. First, we have optimized the oxidation level of GO by reducing amount of oxidizing agent (i.e. KMnO4) to control the sp2/sp3 hybridization ratio for a series of GO nanosheets samples. We noticed the reduction in primary band edge 3.93-3.2 eV while secondary band edge 2.98-2.2 eV of GO nanosheets as the amount of KMnO4 is decreased from 100 to 30%. Second, we have fabricated a series of 2-dimensional nanocomposites sample containing GO/Iron-oxide by using a novel synthesis process wet impregnation method. XRD analysis of synthesized nanocomposites confirmed the presence of both phases,[Formula: see text]-Fe2O3 and Fe3O4 of iron-oxide with prominent plane (001) of GO. Morphological investigation rules out all the possibilities of agglomerations of iron oxide nanoparticles and coagulation of GO nanosheets. Elemental mapping endorsed the homogeneous distribution of iron oxide nanoparticles throughout the GO nanosheets. Raman spectroscopy confirmed the fairly constant ID/IG ratio and FWHM of D and G peaks, thus proving the fact that the synthesis process of nanocomposites has no effect on the degree of oxidation of GO flakes. Red shift in G peak position of all the nanocomposites samples showed the electronic interaction among the constituents of the nanocomposite. Linear decrease in the intensity of PL (Photoluminescence) spectra with the increasing of Iron oxide nanoparticles points towards the increased interaction among the iron oxide nanoparticles and GO flakes. Optical absorption spectroscopy reveals the linear decrease in primary edge of bandgap from 2.8 to 0.99 eV while secondary edge decrease 3.93-2.2 eV as the loading of [Formula: see text]-Fe2O3 nanoparticles is increased from 0 to 5% in GO nanosheets. Among these nanocomposites samples 5%-iron-oxide/95%-GO nanosheet sample may be a good contestant for electronic devices.

15.
Tetrahedron ; 68(37): 7619-7623, 2012 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-22991485

RESUMEN

Shewanella yellow enzyme (SYE-4), a novel recombinant enoate reductase, was screened against a variety of different substrates bearing an activated double bond, such as unsaturated cyclic ketones, diesters, and substituted imides. Dimethyl- and ethyl esters of 2-methylmaleic acid were selectively reduced to (R)-configured succinic acid derivatives and various N-substituted maleimides furnished the desired (R)-products in up to >99% enantiomeric excess. Naturally occurring (+)-carvone was selectively reduced to (-)-cis-dihydrocarvone and (-)-carvone was converted to the diastereomeric product, respectively. Overall SYE-4 proved to be a useful biocatalyst for the selective reduction of activated C = C double bonds and complements the pool of synthetic valuable enoate reductases.

16.
ACS Omega ; 7(16): 13403-13435, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35559169

RESUMEN

At present, plastic waste accumulation has been observed as one of the most alarming environmental challenges, affecting all forms of life, economy, and natural ecosystems, worldwide. The overproduction of plastic materials is mainly due to human population explosion as well as extraordinary proliferation in the global economy accompanied by global productivity. Under this threat, the development of benign and green alternative solutions instead of traditional disposal methods such as conversion of plastic waste materials into cherished carbonaceous nanomaterials such as carbon nanotubes (CNTs), carbon quantum dots (CQDs), graphene, activated carbon, and porous carbon is of utmost importance. This critical review thoroughly summarizes the different types of daily used plastics, their types, properties, ways of accumulation and their effect on the environment and human health, treatment of waste materials, conversion of waste materials into carbon-based compounds through different synthetic schemes, and their utilization in energy storage devices particularly in supercapacitors, as well as future perspectives. The main purpose of this review is to help the targeted audience to design their futuristic study in this desired field by providing information about the work done in the past few years.

17.
RSC Adv ; 13(1): 652-664, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36605659

RESUMEN

High-efficiency, sustainable, non-precious metal-based electrocatalysts with bifunctional catalytic activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are essential for metal-air batteries. In this research, a bifunctional electrocatalyst is developed by synthesizing a novel nanoporous vanadium oxide/carbon composite (NVC-900) through pyrolysis of a highly efficient vanadium metal-organic framework, MIL-101 (V). The fabrication process was conveniently carried out by pyrolyzing the synthesized MIL-101 (V) at 900 °C, producing vanadium oxide nanoparticles embedded in the extensively distributed pores of the carbon network. The evenly distributed nanopores substantially improve the performance of the efficient electrocatalyst for both the oxygen reduction reaction and oxygen evolution reactions (ORR/OER) by increasing surface area and facilitating access to stable catalytic active sites. The unique structure was characterized by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). For oxygen reduction reaction (ORR), the electrocatalyst established a promising limiting current density (J L) of 5.2 mA cm-2 at 1600 rpm at an onset potential of 1.18 V and a half-wave potential of 0.82 V, and for OER, a current density of 10 mA cm-2 was delivered at a potential of 1.48 V. In comparison to 10% Pt/C, the synthesized bifunctional electrocatalyst being almost equally active towards bifunctional activity, showed much better long-term cyclic stability. The one-step thermal pyrolysis strategy to synthesize the nanoporous functional material and the proposed electrocatalytic material's long-term bifunctional activity and durability make it an ideal fit for next-generation portable green metal-air batteries.

18.
RSC Adv ; 11(27): 16768-16804, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35479139

RESUMEN

The human craving for energy is continually mounting and becoming progressively difficult to gratify. At present, the world's massive energy demands are chiefly encountered by nonrenewable and benign fossil fuels. However, the development of dynamic energy cradles for a gradually thriving world to lessen fossil fuel reserve depletion and environmental concerns is currently a persistent issue for society. The discovery of copious nonconventional resources to fill the gap between energy requirements and supply is the extreme obligation of the modern era. A new emergent, clean, and robust alternative to fossil fuels is the fuel cell. Among the different types of fuel cells, the direct ethanol fuel cell (DEFCs) is an outstanding option for light-duty vehicles and portable devices. A critical tactic for obtaining sustainable energy sources is the production of highly proficient, economical and green catalysts for energy storage and conversion devices. To date, a broad range of research is available for using Pt and modified Pt-based electrocatalysts to augment the C2H5OH oxidation process. Pt-based nanocubes, nanorods, nanoflowers, and the hybrids of Pt with metal oxides such as Fe2O3, TiO2, SnO2, MnO, Cu2O, and ZnO, and with conducting polymers are extensively utilized in both acidic and basic media. Moreover, Pd-based materials, transition metal-based materials, as well as transition metal-based materials are also points of interest for researchers nowadays. This review article delivers a broad vision of the current progress of the EOR process concerning noble metals and transition metals-based materials.

19.
RSC Adv ; 11(36): 21904-21925, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35480834

RESUMEN

Water splitting is an important technology for alternative and sustainable energy storage, and a way for the production of hydrogen without generating pollution. In recent years, metal-organic frameworks (MOFs) have become the most capable multifunctional resources because of their high surface areas, tunable porosity, simple modification of compositions, and potential for use as precursors with a variety of morphological structures. Based on these qualities, many MOFs and their derived materials are utilized as electrocatalysts for the water splitting reaction. Herein, we assembled the relevant literature in recent years about MOF and MOF-derived materials for their eminent electrocatalytic activity in water splitting with useful strategies for the design and preparation of catalysts, along with challenges. This review summarizes the advancement in MOF materials, elucidating different strategies for its role in water splitting.

20.
Sci Rep ; 11(1): 13402, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183691

RESUMEN

Present work comprehensively investigated the electrochemical response of Nickel-2 Aminoterephthalic acid Metal-Organic Framework (NiNH2BDC) and its reduced graphitic carbon (rGO) based hybrids for methanol (CH3OH) oxidation reaction (MOR) in an alkaline environment. In a thorough analysis of a solvothermally synthesized Metal-Organic Frameworks (MOFs) and its reduced graphitic carbon-based hybrids, functional groups detection was performed by FTIR, the morphological study by SEM, crystal structure analysis via XRD, and elemental analysis through XPS while electrochemical testing was accomplished by Chronoamperometry (CA), Cyclic Voltametric method (CV), Electrochemically Active Surface Area (EASA), Tafel slope (b), Electron Impedance Spectroscopy (EIS), Mass Activity, and roughness factor. Among all the fabricated composites, NiNH2BDC MOF/5 wt% rGO hybrid by possessing an auspicious current density (j) of 267.7 mA/cm2 at 0.699 V (vs Hg/HgO), a Tafel slope value of 60.8 mV dec-1, EASA value of 15.7 cm2, and by exhibiting resistance of 13.26 Ω in a 3 M CH3OH/1 M NaOH solution displays grander electrocatalytic activity as compared to state-of-the-art platinum-based electrocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA