Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Solid State Nucl Magn Reson ; 133: 101960, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39208660

RESUMEN

This study builds upon our prior researches and seeks to investigate and clarify the influences of various characteristics of hydrogen bonds (H-bonds) and charge transfer (CT) interactions, which were detected within the inhibitor binding pockets (labeled as the QM models I-IV) of MraYAA-capuramycin, MraYAA-carbacaprazamycin, MraYAA-3'-hydroxymureidomycin A, and MraYAA-muraymycin D2 complexes by QTAIM and NBO analyses from DFT QM/MM MD calculations, on the 17O chemical shielding (CS) and electric field gradient (EFG) tensors of carboxylate (Oδ), carbonyl (C═O), and hydroxyl (O-H) oxygens in these models. The 17O CS and EFG tensors of these three types of oxygens in QM models I-IV were calculated at the M06-2X/6-31G** level by including the solvent effects using the polarizable continuum model. From the computed 17O CS and EFG tensors in these models, it was found that the nuclear shielding, σiso, for carboxylate or carbonyl oxygen increases (shielding effect) as the H-bond length decreases and the percentage p-character of nOδ/nC═O lone pair partner in the CT interaction enhances. In contrast, the σiso (17O-H) decreases (deshielding effect) with a reduction in the H-bond length as well as with an enhancement in percentage s-character of the nOH lone pair/σ*O-H antibond. By reducing the H-bond length or by increasing p-character of the nOδ/nC═O lone pair, the 17Oδ/17O═C quadrupole coupling constant smoothly decreases, while the 17Oδ/17O═C asymmetry parameter smoothly increases. Moreover, these calculated parameters are in a good agreement with the experimental values. The information garnered here is valuable particularly for further understanding of empirical correlations between 17O NMR spectroscopic and H-bonding characteristics in the protein-ligand complexes.

2.
Phys Chem Chem Phys ; 20(47): 29889-29895, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30468442

RESUMEN

The electronic properties, adsorption energies and energy barrier of sodium ion diffusion in B-doped graphyne (BGY) are studied by density functional theory (DFT) method. If some carbon atoms in pristine graphyne (GY) are substituted by boron atoms (one substitution per unit cell in this work), BGY is obtained, and the band structure and density of state (DOS) plots indicate a transition from a semiconductive state for GY to a metallic state for BGY. The calculated adsorption energy shows an improvement in the trigonal-like pore (T site) and hexagonal ring (H site) adsorption of BGY compared to the corresponding analog sites in GY. The comparison of projected density of state (PDOS) plots before and after adsorption reveals charge transfer from sodium to nanosheets. Therefore, the interaction between adsorbed sodium atom and BGY/GY has ionic character and not covalent. This phenomenon is important for the reversible sodium adsorption in secondary batteries. Moreover, PDOS plots show that the electron transfer from sodium atom to host structure in BGY is more than in GY, which is in agreement with adsorption energies. According to diffusion energy barrier calculations, boron atoms in BGY structure provide low energy paths for sodium ions diffusion. We estimate a theoretical capacity of 751 mA h g-1 for the maximum sodium adsorption on BGY (without cluster formation). Therefore, BGY is a promising anode material for sodium ion batteries (SIBs).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA