Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 576(7786): 253-256, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31827290

RESUMEN

Limiting the increase of CO2 in the atmosphere is one of the largest challenges of our generation1. Because carbon capture and storage is one of the few viable technologies that can mitigate current CO2 emissions2, much effort is focused on developing solid adsorbents that can efficiently capture CO2 from flue gases emitted from anthropogenic sources3. One class of materials that has attracted considerable interest in this context is metal-organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO2 from nitrogen4-7 do not perform well when using realistic flue gas that contains water, because water competes with CO2 for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive8,9. Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO2-binding sites-which we term 'adsorbaphores'-that endow MOFs with CO2/N2 selectivity that persists in wet flue gases. We subsequently synthesized two water-stable MOFs containing the most hydrophobic adsorbaphore, and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process-including the targeted CO2 sink, such as geological storage or serving as a carbon source for the chemical industry-will be necessary to identify the optimal separation material.

2.
Chimia (Aarau) ; 77(12): 836-841, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38131407

RESUMEN

Plastics materials are essential in every part of our lives, resulting in their increasing production and consumption. Consequently, recycling of plastics has been of great importance in the last decades. Among all types of plastics, polyesters have become very appealing for numerous kinds of applications, making their recycling crucial. Several techniques have been developed for the recycling of plastics with the aim of eliminating the waste accumulated, as well as to create a circular economy.

3.
Chem Soc Rev ; 50(5): 3143-3177, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33475661

RESUMEN

Pyrene is one of the most widely investigated aromatic hydrocarbons given to its unique optical and electronic properties. Hence, pyrene-based ligands have been attractive for the synthesis of metal-organic frameworks (MOFs) in the last few years. In this review, we will focus on the most important characteristics of pyrene, in addition to the development and synthesis of pyrene-based molecules as bridging ligands to be used in MOF structures. We will summarize the synthesis attempts, as well as the post-synthetic modifications of pyrene-based MOFs by the incorporation of metals or ligands in the structure. The discussion of promising results of such MOFs in several applications; including luminescence, photocatalysis, adsorption and separation, heterogeneous catalysis, electrochemical applications and bio-medical applications will be highlighted. Finally, some insights and future prospects will be given based on the studies discussed in the review. This review will pave the way for the researchers in the field for the design and development of novel pyrene-based structures and their utilization for different applications.

5.
J Am Chem Soc ; 141(15): 6271-6278, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30915844

RESUMEN

Targeted modification of electronic structure is an important step in the optimization of metal-organic frameworks (MOFs) for photovoltaic, sensing, and photocatalytic applications. The key parameters to be controlled include the band gap, the absolute energy position of band edges, the excited state charge separation, and degree of hybridization between metal and ligand sites. Partial metal replacement, or metal doping, within secondary building units is a promising, yet relatively unexplored route to modulate these properties in MOFs. Therefore, in the present study, a general method for selecting metal dopant is worked out in theory and validated by experiment, retaining MIL-125 and UiO-66 as the model systems. Metal mixing enables targeted optimization of key electronic structure parameters. This method is applicable to any MOF architecture and can serve as a roadmap for future synthesis of MOFs with predefined properties.

6.
Magn Reson Med ; 82(1): 367-376, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30847967

RESUMEN

PURPOSE: Hyperpolarized (HP) media enable biomedical imaging applications that cannot be achieved with conventional MRI contrast agents. Unfortunately, quantifying HP images is challenging, because relaxation and radio-frequency pulsing generate spatially varying signal decay during acquisition. We demonstrate that, by combining center-out k-space sampling with postacquisition keyhole reconstruction, voxel-by-voxel maps of regional HP magnetization decay can be generated with no additional data collection. THEORY AND METHODS: Digital phantom, HP 129 Xe phantom, and in vivo 129 Xe human (N = 4 healthy; N = 2 with cystic fibrosis) imaging was performed using radial sampling. Datasets were reconstructed using a postacquisition keyhole approach in which 2 temporally resolved images were created and used to generate maps of regional magnetization decay following a simple analytical model. RESULTS: Mean, keyhole-derived decay terms showed excellent agreement with the decay used in simulations (R2 = 0.996) and with global attenuation terms in HP 129 Xe phantom imaging (R2 > 0.97). Mean regional decay from in vivo imaging agreed well with global decay values and displayed spatial heterogeneity that matched expected variations in flip angle and oxygen partial pressure. Moreover, these maps could be used to correct variable signal decay across the image volume. CONCLUSIONS: We have demonstrated that center-out trajectories combined with keyhole reconstruction can be used to map regional HP signal decay and to quantitatively correct images. This approach may be used to improve the accuracy of quantitative measures obtained from hyperpolarized media. Although validated with gaseous HP 129 Xe in this work, this technique can be generalized to any hyperpolarized agent.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Procesamiento de Señales Asistido por Computador , Adolescente , Adulto , Niño , Preescolar , Medios de Contraste , Fibrosis Quística/diagnóstico por imagen , Femenino , Humanos , Pulmón/diagnóstico por imagen , Masculino , Fantasmas de Imagen , Isótopos de Xenón
7.
Diabetologia ; 61(8): 1734-1747, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29789878

RESUMEN

AIMS/HYPOTHESIS: In line with current advice, we assessed the effect of replacing carbohydrate consumption with mixed nut consumption, as a source of unsaturated fat, on cardiovascular risk factors and HbA1c in type 2 diabetes. The data presented here are from a paper that was retracted at the authors' request ( https://doi.org/10.2337/dc16-rt02 ) owing to lack of adjustment for repeated measures in the same individual. Our aim, therefore, was to fix the error and add new complementary data of interest, including information on clotting factors and LDL particle size. METHODS: A total of 117 men and postmenopausal women with type 2 diabetes who were taking oral glucose-lowering agents and with HbA1c between 47.5 and 63.9 mmol/mol (6.5-8.0%) were randomised after stratification by sex and baseline HbA1c in a parallel design to one of three diets for 3 months: (1) 'full-dose nut diet' (n = 40): a diet with 2.0 MJ (477 kcal) per 8.4 MJ (2000 kcal) energy provided as mixed nuts (75 g/day); (2) 'full-dose muffin diet' (n = 39): a diet with 1.97 MJ (471 kcal) per 8.4 MJ (2000 kcal) energy provided as three whole-wheat muffins (188 g/day), with a similar protein content to the nuts, and the same carbohydrate-derived energy content as the monounsaturated fatty acid-derived energy content in the nuts; or (3) 'half-dose nut diet' (n = 38): a diet with 1.98 MJ (474 kcal) per 8.4 MJ (2000 kcal) energy provided as half portions of both the nuts and muffins. The primary outcome was change in HbA1c. The study was carried out in a hospital clinical research centre and concluded in 2008. Only the statistician, study physicians and analytical technicians could be blinded to the group assessment. RESULTS: A total of 108 participants had post-intervention data available for analysis (full-dose nut group, n = 40; full-dose muffin group, n = 35; half-dose nut group, n = 33). Compared with the full-dose muffin diet, the full-dose nut diet provided 9.2% (95% CI 7.1, 11.3) greater total energy intake from monounsaturated fat. The full-dose nut diet (median intake, 75 g/day) also reduced HbA1c compared with the full-dose muffin diet by -2.0 mmol/mol (95% CI -3.8, -0.3 mmol/mol) (-0.19% [95% CI -0.35%, -0.02%]), (p = 0.026). Estimated cholesterol levels in LDL particles with a diameter <255 ångström [LDL-c<255Å]) and apolipoprotein B were also significantly decreased after the full-dose nut diet compared with the full-dose muffin diet. According to the dose response, the full-dose nut diet is predicted to reduce HbA1c (-2.0 mmol/mol [-0.18%]; p = 0.044), cholesterol (-0.25 mmol/l; p = 0.022), LDL-cholesterol (-0.23 mmol/l; p = 0.019), non-HDL-cholesterol (-0.26 mmol/l; p = 0.020), apolipoprotein B (-0.06 g/l, p = 0.013) and LDL-c<255Å (-0.42 mmol/l; p < 0.001). No serious study-related adverse events occurred, but one participant on the half-dose nut diet was hospitalised for atrial fibrillation after shovelling snow. CONCLUSIONS/INTERPRETATION: Nut intake as a replacement for carbohydrate consumption improves glycaemic control and lipid risk factors in individuals with type 2 diabetes. TRIAL REGISTRATION: ClinicalTrials.gov NCT00410722 FUNDING: The study was funded by the International Tree Nut Council Nutrition Research and Education Foundation, the Peanut Institute, Loblaw Companies and the Canada Research Chairs Program of the Government of Canada.


Asunto(s)
Diabetes Mellitus Tipo 2/terapia , Dieta para Diabéticos , Carbohidratos de la Dieta , Nueces , Anciano , Apolipoproteínas/sangre , Factores de Coagulación Sanguínea/metabolismo , Glucemia/análisis , Presión Sanguínea , Peso Corporal , LDL-Colesterol/sangre , Interpretación Estadística de Datos , Dieta , Femenino , Análisis de los Alimentos , Humanos , Lípidos/sangre , Lipoproteínas LDL/química , Masculino , Persona de Mediana Edad , Tamaño de la Partícula , Reproducibilidad de los Resultados
8.
Prostate ; 76(15): 1445-53, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27403913

RESUMEN

BACKGROUND: Metformin is the first-line oral antihyperglycemic of choice for individuals with type 2 diabetes. Recent evidence supports a role for metformin in prostate cancer chemoprotection. However, whether metformin indeed influences prostate biology is unknown. We aimed to study the association between metformin and serum prostate-specific antigen (PSA) levels-the primary prostate cancer biomarker. METHODS: We conducted a cross-sectional study of 326 prostate cancer-free men with type 2 diabetes were recruited between 2004 and 2013 at St. Michael's Hospital. Men were excluded if they had a PSA ≥10-ng/ml, or used >2,550-mg/d metformin or supplemental androgens. Multivariate linear regressions quantified the association between metformin dose and log-PSA. Secondary analyses quantified the association between other antihyperglycemics (sulfonylureas, thiazolidinediones) and PSA; sensitivity analyses tested covariate interactions. RESULTS: Median PSA was 0.9-ng/ml (IQR: 0.5-1.6-ng/ml). Metformin dose associated positively with BMI, HbA1c, diabetes duration, and number of statin, acetylsalicylic acid, diuretic users, and number of antihyperglycemics used, and negatively with LDL-C. In multivariate models, PSA changed by -8% (95%CI: -13 to -2%, P = 0.011) per 500-mg/d increase in metformin. Men with diabetes for ≥6 years (n = 163) saw a greater difference in PSA per 500-mg/d metformin (-12% [95% CI: -19 to -4%, P = 0.002], P-interaction = 0.018). Serum PSA did not relate with sulfonylureas, thiazolidinediones, or total number of antihyperglycemic agents used. Our findings are limited by the cross-sectional design of this study. CONCLUSIONS: Metformin dose-dependently inversely associated with serum PSA, independent of other antihyperglycemic medications. Whether metformin confers a dose-dependent benefit on prostate tumorigenesis and progression warrants investigation. Prostate 76:1445-1453, 2016. © 2016 The Authors. The Prostate published by Wiley Periodicals, Inc.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Metformina/farmacología , Antígeno Prostático Específico/sangre , Antineoplásicos/farmacología , Biomarcadores de Tumor/sangre , Quimioprevención , Estudios Transversales , Diabetes Mellitus Tipo 2/sangre , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Persona de Mediana Edad
9.
Artículo en Inglés | MEDLINE | ID: mdl-26457072

RESUMEN

MRI acoustic exposure has the potential to elicit physiological distress and impact development in preterm and term infants. To mitigate this risk, a novel acoustically quiet coil was developed to reduce the sound pressure level experienced by neonates during MR procedures. The new coil has a conventional high-pass birdcage RF design, but is built on a framework of sound abating material. We evaluated the acoustic and MR imaging performance of the quiet coil and a conventional body coil on two small footprint NICU MRI systems. Sound pressure level and frequency response measurements were made for six standard clinical MR imaging protocols. The average sound pressure level, reported for all six imaging pulse sequences, was 82.2 dBA for the acoustically quiet coil, and 91.1 dBA for the conventional body coil. The sound pressure level values measured for the acoustically quiet coil were consistently lower, 9 dBA (range 6-10 dBA) quieter on average. The acoustic frequency response of the two coils showed a similar harmonic profile for all imaging sequences. However, the amplitude was lower for the quiet coil, by as much as 20 dBA.

10.
ACS Appl Mater Interfaces ; 16(28): 36586-36598, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38978297

RESUMEN

Pore topology and chemistry play crucial roles in the adsorption characteristics of metal-organic frameworks (MOFs). To deepen our understanding of the interactions between MOFs and CO2 during this process, we systematically investigate the adsorption properties of a group of pyrene-based MOFs. These MOFs feature Zn(II) as the metal ion and employ a pyrene-based ligand, specifically 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy). Including different additional ligands leads to frameworks with distinctive structural and chemical features. By comparing these structures, we could isolate the role that pore size, the presence of open-metal sites (OMS), metal-oxygen bridges, and framework charges play in the CO2 adsorption of these MOFs. Frameworks with constricted pore structures display a phenomenon known as the confinement effect, fostering stronger MOF-CO2 interactions and higher uptakes at low pressures. In contrast, entropic effects dominate at elevated pressures, and the MOF's pore volume becomes the driving factor. Through analysis of the CO2 uptakes of the benchmark materials ─some with narrower pores and others with larger pore volumes─it becomes evident that structures with narrower pores and high binding energies excel at low pressures. In contrast, those with larger volumes perform better at elevated pressures. Moreover, this research highlights that open-metal sites and inherent charges within the frameworks of ionic MOFs stand out as CO2-philic characteristics.

11.
RSC Sustain ; 1(3): 494-503, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37215582

RESUMEN

Metal-Organic Framework (MOF)-derived TiO2, synthesised through the calcination of MIL-125-NH2, is investigated for its potential as a CO2 photoreduction catalyst. The effect of the reaction parameters: irradiance, temperature and partial pressure of water was investigated. Using a two-level design of experiments, we were able to evaluate the influence of each parameter and their potential interactions on the reaction products, specifically the production of CO and CH4. It was found that, for the explored range, the only statistically significant parameter is temperature, with an increase in temperature being correlated to enhanced production of both CO and CH4. Over the range of experimental settings explored, the MOF-derived TiO2 displays high selectivity towards CO (98%), with only a small amount of CH4 (2%) being produced. This is notable when compared to other state-of-the-art TiO2 based CO2 photoreduction catalysts, which often showcase lower selectivity. The MOF-derived TiO2 was found to have a peak production rate of 8.9 × 10-4 µmol cm-2 h-1 (2.6 µmol g-1 h-1) and 2.6 × 10-5 µmol cm-2 h-1 (0.10 µmol g-1 h-1) for CO and CH4, respectively. A comparison is made to commercial TiO2, P25 (Degussa), which was shown to have a similar activity towards CO production, 3.4 × 10-3 µmol cm-2 h-1 (5.9 µmol g-1 h-1), but a lower selectivity preference for CO (3 : 1 CH4 : CO) than the MOF-derived TiO2 material developed here. This paper showcases the potential for MIL-125-NH2 derived TiO2 to be further developed as a highly selective CO2 photoreduction catalyst for CO production.

12.
J Am Chem Soc ; 134(50): 20466-78, 2012 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-23121122

RESUMEN

The reaction between Zn and a pyrene-based ligand decorated with benzoate fragments (H(4)TBAPy) yields a 2D layered porous network with the metal coordination based on a paddlewheel motif. Upon desolvation, the structure undergoes a significant and reversible structural adjustment with a corresponding reduction in crystallinity. The combination of computationally assisted structure determination and experimental data analysis of the desolvated phase revealed a structural change in the metal coordination geometry from square-pyramidal to tetrahedral. Simulations of desolvation showed that the local distortion of the ligand geometry followed by the rotation and displacement of the pyrene core permits the breakup of the metal-paddlewheel motifs and the formation of 1D Zn-O chains that cross-link adjacent layers, resulting in a dimensionality change from the 2D layered structure to a 3D structure. Constrained Rietveld refinement of the powder X-ray diffraction pattern of the desolvated phase and the use of other analytical techniques such as porosity measurements, (13)C CP MAS NMR spectroscopy, and fluorescence spectroscopy strongly supported the observed structural transformation. The 3D network is stable up to 425 °C and is permanently porous to CO(2) with an apparent BET surface area of 523(8) m(2)/g (p/p° = 0.02-0.22). Because of the hydrophobic nature, size, and shape of the pores of the 3D framework, the adsorption behavior of the structure toward p-xylene and m-xylene was studied, and the results indicated that the shape of the isotherm and the kinetics of the adsorption process are determined mainly by the shape of the xylene isomers, with each xylene isomer interacting with the host framework in a different manner.


Asunto(s)
Compuestos Orgánicos/química , Zinc/química , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Espectrometría de Fluorescencia
13.
Stroke Res Treat ; 2022: 8185893, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36345552

RESUMEN

Background: Motor (re)learning via technology-dependent therapy has the potential to complement traditional therapies available to older adults living with stroke after hospital discharge and increase therapy dose. To date, little is known about the feasibility of technology-dependent therapy in a home setting for this population. Objective: To develop a technology-dependent therapy that provides mental and physical training for older adults with stroke and assess feasibility. Specifically we ask, "Can it work"? Design: Single group repeated measures. Methods: 13 participants, aged 18 years and over, were recruited over a six-month period. All participants had mild upper limb impairment following a stoke and were no longer receiving intensive rehabilitation. All participants received 18 days of technology-dependent therapy in their own home. Information was gathered on recruitment and retention, usability, and suitability of outcome measures. Results: 11 participants completed the study. The recruitment rate (number recruited/number canvassed; 10.7%) suggests 1907 participants would need to be canvassed to recruit the necessary sample size (n = 204) for a definitive trial designed to provide 90% power at 5% level of significance to detect a clinically meaningful difference of 5.7 points on the Action Research Arm Test. The usability of the application was rated as exceptional on the System Usability Scale. Effectiveness cannot be determined from this study; however, there was a trend for improvement in measures of upper limb function and emotional well-being. Limitations. The study was limited by a relatively small sample size and lack of control group. Conclusions: This study demonstrated proof of concept of a technology-dependent therapy for upper limb rehabilitation following stroke. The data suggest a definitive trial is feasible, additional strategies to improve recruitment should be considered. Outcome measures aligned with the residual motor function of participants are required.

14.
Commun Chem ; 5(1): 170, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36697847

RESUMEN

The synthesis of metal-organic frameworks (MOFs) is often complex and the desired structure is not always obtained. In this work, we report a methodology that uses a joint machine learning and experimental approach to optimize the synthesis conditions of Al-PMOF (Al2(OH)2TCPP) [H2TCPP = meso-tetra(4-carboxyphenyl)porphine], a promising material for carbon capture applications. Al-PMOF was previously synthesized using a hydrothermal reaction, which gave a low throughput yield due to its relatively long reaction time (16 hours). Here, we use a genetic algorithm to carry out a systematic search for the optimal synthesis conditions and a microwave-based high-throughput robotic platform for the syntheses. We show that, in just two generations, we could obtain excellent crystallinity and yield close to 80% in a much shorter reaction time (50 minutes). Moreover, by analyzing the failed and partially successful experiments, we could identify the most important experimental variables that determine the crystallinity and yield.

15.
J Neurosci Methods ; 382: 109728, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36244524

RESUMEN

BACKGROUND: A device for moving the head during MR imaging, called a Weighted Head Accelerator Mechanism (WHAM), rotates the head of a supine subject within programmable rotation limits and acceleration profiles. The WHAM can be used with custom MRI sequences to visualize the deformation and recoil of in vivo brain parenchyma with high temporal resolution, allowing element-wise calculation of strain and shear forces in the brain. Unlike previous devices, the WHAM can be configured to provide a wide range of motion and acceleration profiles. NEW METHOD: The WHAM was calibrated using a high-speed camera on a laboratory bench and in 1.5 Tesla and 3.0 Tesla MRI scanners using gel phantoms and human subjects. The MR imaging studies employed a spatial spin-saturation tagging sub-sequence, followed by serial image acquisition. In these studies, 256 images were acquired with a temporal resolution of 2.56 ms. Deformation of the brain was quantified by following the spatial tags in the images. RESULTS: MR imaging showed that the WHAM drove quantifiable brain motions using g forces less than those typically observed in day-to-day activities, with peak accelerations of ∼250 rad/sec2. COMPARISON WITH EXISTING METHODS: The peak pre-contact accelerations and velocities achieved by the WHAM device in this study are both higher than devices used in previous studies, while also allowing for modification of these factors. CONCLUSIONS: MR imaging performed with the WHAM provides a direct method to visualize and quantify "brain slosh" in response to rotational acceleration. Consequently, this approach might find utility in evaluating strategies to protect the brain from mild traumatic brain injury (mTBI).


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Cabeza , Aceleración , Reología
16.
Chem Mater ; 34(9): 3893-3901, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35573112

RESUMEN

Mg-Al mixed metal oxides (MMOs), derived from the decomposition of layered double hydroxides (LDHs), have been purposed as adsorbents for CO2 capture of industrial plant emissions. To aid in the design and optimization of these materials for CO2 capture at 200 °C, we have used a combination of solid-state nuclear magnetic resonance (ssNMR) and density functional theory (DFT) to characterize the CO2 gas sorption products and determine the various sorption sites in Mg-Al MMOs. A comparison of the DFT cluster calculations with the observed 13C chemical shifts of the chemisorbed products indicates that mono- and bidentate carbonates are formed at the Mg-O sites with adjacent Al substitution of an Mg atom, while the bicarbonates are formed at Mg-OH sites without adjacent Al substitution. Quantitative 13C NMR shows an increase in the relative amount of strongly basic sites, where the monodentate carbonate product is formed, with increasing Al/Mg molar ratios in the MMOs. This detailed understanding of the various basic Mg-O sites presented in MMOs and the formation of the carbonate, bidentate carbonate, and bicarbonate chemisorbed species yields new insights into the mechanism of CO2 adsorption at 200 °C, which can further aid in the design and capture capacity optimization of the materials.

17.
J Am Chem Soc ; 133(4): 1016-32, 2011 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-21158451

RESUMEN

Charge transfer between metal ions occupying distinct crystallographic sublattices in an ordered material is a strategy to confer visible light absorption on complex oxides to generate potentially catalytically active electron and hole charge carriers. CaCu3Ti4O12 has distinct octahedral Ti4+ and square planar Cu2+ sites and is thus a candidate material for this approach. The sol−gel synthesis of high surface area CaCu3Ti4O12 and investigation of its optical absorption and photocatalytic reactivity with model pollutants are reported. Two gaps of 2.21 and 1.39 eV are observed in the visible region. These absorptions are explained by LSDA+U electronic structure calculations, including electron correlation on the Cu sites, as arising from transitions from a Cu-hybridized O 2p-derived valence band to localized empty states on Cu (attributed to the isolation of CuO4 units within the structure of CaCu3Ti4O12) and to a Ti-based conduction band. The resulting charge carriers produce selective visible light photodegradation of 4-chlorophenol (monitored by mass spectrometry) by Pt-loaded CaCu3Ti4O12 which is attributed to the chemical nature of the photogenerated charge carriers and has a quantum yield comparable with commercial visible light photocatalysts.

18.
ACS Appl Mater Interfaces ; 13(48): 57118-57131, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34817166

RESUMEN

Metal-organic frameworks (MOFs) are promising materials for the photocatalytic H2 evolution reaction (HER) from water. To find the optimal MOF for a photocatalytic HER, one has to consider many different factors. For example, studies have emphasized the importance of light absorption capability, optical band gap, and band alignment. However, most of these studies have been carried out on very different materials. In this work, we present a combined experimental and computation study of the photocatalytic HER performance of a set of isostructural pyrene-based MOFs (M-TBAPy, where M = Sc, Al, Ti, and In). We systematically studied the effects of changing the metal in the node on the different factors that contribute to the HER rate (e.g., optical properties, the band structure, and water adsorption). In addition, for Sc-TBAPy, we also studied the effect of changes in the crystal morphology on the photocatalytic HER rate. We used this understanding to improve the photocatalytic HER efficiency of Sc-TBAPy, to exceed the one reported for Ti-TBAPy, in the presence of a co-catalyst.

19.
ACS Appl Mater Interfaces ; 13(12): 14239-14247, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33749235

RESUMEN

A strategy for enhancing the photocatalytic performance of MOF-based systems (MOF: metal-organic framework) is developed through the construction of MOF/MOF heterojunctions. The combination of MIL-167 with MIL-125-NH2 leads to the formation of MIL-167/MIL-125-NH2 heterojunctions with improved optoelectronic properties and efficient charge separation. MIL-167/MIL-125-NH2 outperforms its single components MIL-167 and MIL-125-NH2, in terms of photocatalytic H2 production (455 versus 0.8 and 51.2 µmol h-1 g-1, respectively), under visible-light irradiation, without the use of any cocatalysts. This is attributed to the appropriate band alignment of these MOFs, the enhanced visible-light absorption, and long charge separation within MIL-167/MIL-125-NH2. Our findings contribute to the discovery of novel MOF-based photocatalytic systems that can harvest solar energy and exhibit high catalytic activities in the absence of cocatalysts.

20.
Chem Sci ; 12(10): 3587-3598, 2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34163632

RESUMEN

Colour is at the core of chemistry and has been fascinating humans since ancient times. It is also a key descriptor of optoelectronic properties of materials and is often used to assess the success of a synthesis. However, predicting the colour of a material based on its structure is challenging. In this work, we leverage subjective and categorical human assignments of colours to build a model that can predict the colour of compounds on a continuous scale. In the process of developing the model, we also uncover inadequacies in current reporting mechanisms. For example, we show that the majority of colour assignments are subject to perceptive spread that would not comply with common printing standards. To remedy this, we suggest and implement an alternative way of reporting colour-and chemical data in general. All data is captured in an objective, and standardised, form in an electronic lab notebook and subsequently automatically exported to a repository in open formats, from where it can be interactively explored by other researchers. We envision this to be key for a data-driven approach to chemical research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA