Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
PLoS Genet ; 20(3): e1011203, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38442104

RESUMEN

A number of studies have demonstrated that epigenetic factors regulate plant developmental timing in response to environmental changes. However, we still have an incomplete view of how epigenetic factors can regulate developmental events such as organogenesis, and the transition from cell division to cell expansion, in plants. The small number of cell types and the relatively simple developmental progression required to form the Arabidopsis petal makes it a good model to investigate the molecular mechanisms driving plant organogenesis. In this study, we investigated how the RABBIT EARS (RBE) transcriptional repressor maintains the downregulation of its downstream direct target, TCP5, long after RBE expression dissipates. We showed that RBE recruits the Groucho/Tup1-like corepressor TOPLESS (TPL) to repress TCP5 transcription in petal primordia. This process involves multiple layers of changes such as remodeling of chromatin accessibility, alteration of RNA polymerase activity, and histone modifications, resulting in an epigenetic memory that is maintained through multiple cell divisions. This memory functions to maintain cell divisions during the early phase of petal development, and its attenuation in a cell division-dependent fashion later in development enables the transition from cell division to cell expansion. Overall, this study unveils a novel mechanism by which the memory of an epigenetic state, and its cell-cycle regulated decay, acts as a timer to precisely control organogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , División Celular/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Flores
2.
Plant J ; 116(3): 855-870, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37548081

RESUMEN

Plant cells and organs grow into a remarkable diversity of shapes, as directed by cell walls composed primarily of polysaccharides such as cellulose and multiple structurally distinct pectins. The properties of the cell wall that allow for precise control of morphogenesis are distinct from those of the individual polysaccharide components. For example, cellulose, the primary determinant of cell morphology, is a chiral macromolecule that can self-assemble in vitro into larger-scale structures of consistent chirality, and yet most plant cells do not display consistent chirality in their growth. One interesting exception is the Arabidopsis thaliana rhm1 mutant, which has decreased levels of the pectin rhamnogalacturonan-I and causes conical petal epidermal cells to grow with a left-handed helical twist. Here, we show that in rhm1 the cellulose is bundled into large macrofibrils, unlike the evenly distributed microfibrils of the wild type. This cellulose bundling becomes increasingly severe over time, consistent with cellulose being synthesized normally and then self-associating into macrofibrils. We also show that in the wild type, cellulose is oriented transversely, whereas in rhm1 mutants, the cellulose forms right-handed helices that can account for the helical morphology of the petal cells. Our results indicate that when the composition of pectin is altered, cellulose can form cellular-scale chiral structures in vivo, analogous to the helicoids formed in vitro by cellulose nano-crystals. We propose that an important emergent property of the interplay between rhamnogalacturonan-I and cellulose is to permit the assembly of nonbundled cellulose structures, providing plants flexibility to orient cellulose and direct morphogenesis.


Asunto(s)
Arabidopsis , Celulosa , Celulosa/metabolismo , Lateralidad Funcional , Ramnogalacturonanos/análisis , Ramnogalacturonanos/metabolismo , Pectinas/metabolismo , Polisacáridos/metabolismo , Pared Celular/metabolismo
3.
Plant Cell ; 31(5): 1155-1170, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30914467

RESUMEN

Light elicits different growth responses in different organs of plants. These organ-specific responses are prominently displayed during de-etiolation. While major light-responsive components and early signaling pathways in this process have been identified, this information has yet to explain how organ-specific light responses are achieved. Here, we report that members of the TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) transcription factor family participate in photomorphogenesis and facilitate light-induced cotyledon opening in Arabidopsis (Arabidopsis thaliana). Chromatin immunoprecipitation sequencing and RNA sequencing analyses indicated that TCP4 targets a number of SMALL AUXIN UPREGULATED RNA (SAUR) genes that have previously been shown to exhibit organ-specific, light-responsive expression. We demonstrate that TCP4-like transcription factors, which are predominantly expressed in the cotyledons of both light- and dark-grown seedlings, activate SAUR16 and SAUR50 expression in response to light. Light regulates the binding of TCP4 to the promoters of SAUR14, SAUR16, and SAUR50 through PHYTOCHROME-INTERACTING FACTORs (PIFs). PIF3, which accumulates in etiolated seedlings and its levels rapidly decline upon light exposure, also binds to the SAUR16 and SAUR50 promoters, while suppressing the binding of TCP4 to these promoters in the dark. Our study reveals that the interplay between light-responsive factors PIFs and the developmental regulator TCP4 determines the cotyledon-specific light regulation of SAUR16 and SAUR50, which contributes to cotyledon closure and opening before and after de-etiolation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Fitocromo/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cotiledón/genética , Cotiledón/fisiología , Cotiledón/efectos de la radiación , Etiolado/efectos de la radiación , Ácidos Indolacéticos/metabolismo , Luz , Plantones/genética , Factores de Transcripción/genética , Activación Transcripcional , Regulación hacia Arriba
4.
Plant Physiol ; 182(1): 159-166, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31690709

RESUMEN

The phytochrome B (phyB) photoreceptor stimulates light responses in plants in part by inactivating repressors of light responses, such as PHYTOCHROME-INTERACTING FACTOR3 (PIF3). Activated phyB inhibits PIF3 by rapid protein degradation and decreased transcription. PIF3 protein degradation is mediated by EIN3-BINDING F-BOX PROTEIN (EBF) and LIGHT-RESPONSE BTB (LRB) E3 ligases, the latter of which simultaneously targets phyB for degradation. In this study, we show that PIF3 levels are additionally regulated by alternative splicing and protein translation in Arabidopsis (Arabidopsis thaliana). Overaccumulation of photo-activated phyB, which occurs in the mutant defective for LRB genes under continuous red light, induces a specific alternative splicing of PIF3 that results in retention of an intron in the 5' untranslated region of PIF3 mRNA. In turn, the upstream open reading frames contained within this intron inhibit PIF3 protein synthesis. The phyB-dependent alternative splicing of PIF3 is diurnally regulated under the short-day light cycle. We hypothesize that this reversible regulatory mechanism may be utilized to fine tune the level of PIF3 protein in light-grown plants and may contribute to the oscillation of PIF3 protein abundance under the short-day environment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Intrones/genética , Fitocromo B/metabolismo , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas/genética , Fitocromo B/genética
5.
J Exp Bot ; 72(5): 1809-1821, 2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33258902

RESUMEN

Development of leaf margins is an important process in leaf morphogenesis. CIN-clade TCP (TEOSINTE BRANCHED1/CYCLOIDEA/PCF) transcription factors are known to have redundant roles in specifying leaf margins, but the specific mechanisms through which individual TCP genes function remain elusive. In this study, we report that the CIN-TCP gene TCP5 is involved in repressing the initiation and outgrowth of leaf serrations by activating two key regulators of margin development, the Class II KNOX factor KNAT3 and BEL-like SAW1. Specifically, TCP5 directly promotes the transcription of KNAT3 and indirectly activates the expression of SAW1. We also show that TCP5 regulates KNAT3 and SAW1 in a temporal- and spatial- specific manner that is largely in accordance with the progress of formation of serrations. This regulation might serve as a key mechanism in patterning margin morphogenesis and in sculpting the final form of the leaf.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hojas de la Planta/crecimiento & desarrollo , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Plant J ; 94(4): 649-660, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29505161

RESUMEN

Rhamnose is required in Arabidopsis thaliana for synthesizing pectic polysaccharides and glycosylating flavonols. RHAMNOSE BIOSYNTHESIS1 (RHM1) encodes a UDP-l-rhamnose synthase, and rhm1 mutants exhibit many developmental defects, including short root hairs, hyponastic cotyledons, and left-handed helically twisted petals and roots. It has been proposed that the hyponastic cotyledons observed in rhm1 mutants are a consequence of abnormal flavonol glycosylation, while the root hair defect is flavonol-independent. We have recently shown that the helical twisting of rhm1 petals results from decreased levels of rhamnose-containing cell wall polymers. In this study, we found that flavonols indirectly modify the rhm1 helical petal phenotype by altering rhamnose flux to the cell wall. Given this finding, we further investigated the relationship between flavonols and the cell wall in rhm1 cotyledons. We show that decreased flavonol rhamnosylation is not responsible for the cotyledon phenotype of rhm1 mutants. Instead, blocking flavonol synthesis or rhamnosylation can suppress rhm1 defects by diverting UDP-l-rhamnose to the synthesis of cell wall polysaccharides. Therefore, rhamnose is required in the cell wall for normal expansion of cotyledon epidermal cells. Our findings suggest a broad role for rhamnose-containing cell wall polysaccharides in the morphogenesis of epidermal cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Flavonoles/metabolismo , Glucosiltransferasas/metabolismo , Ramnosa/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Cotiledón/enzimología , Cotiledón/genética , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Mutación , Fenotipo , Epidermis de la Planta/enzimología , Epidermis de la Planta/genética , Polisacáridos/metabolismo , Azúcares de Uridina Difosfato/metabolismo
7.
Plant J ; 93(2): 377-386, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29161464

RESUMEN

The CRISPR/Cas9 system has greatly improved our ability to engineer targeted mutations in eukaryotic genomes. While CRISPR/Cas9 appears to work universally, the efficiency of targeted mutagenesis and the adverse generation of off-target mutations vary greatly between different organisms. In this study, we report that Arabidopsis plants subjected to heat stress at 37°C show much higher frequencies of CRISPR-induced mutations compared to plants grown continuously at the standard temperature (22°C). Using quantitative assays relying on green fluorescent protein (GFP) reporter genes, we found that targeted mutagenesis by CRISPR/Cas9 in Arabidopsis is increased by approximately 5-fold in somatic tissues and up to 100-fold in the germline upon heat treatment. This effect of temperature on the mutation rate is not limited to Arabidopsis, as we observed a similar increase in targeted mutations by CRISPR/Cas9 in Citrus plants exposed to heat stress at 37°C. In vitro assays demonstrate that Cas9 from Streptococcus pyogenes (SpCas9) is more active in creating double-stranded DNA breaks at 37°C than at 22°C, thus indicating a potential contributing mechanism for the in vivo effect of temperature on CRISPR/Cas9. This study reveals the importance of temperature in modulating SpCas9 activity in eukaryotes, and provides a simple method to increase on-target mutagenesis in plants using CRISPR/Cas9.


Asunto(s)
Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Genoma de Planta/genética , Streptococcus pyogenes/enzimología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Calor , Mutagénesis Sitio-Dirigida , Mutación , Plantas Modificadas Genéticamente , Estrés Fisiológico
8.
Nucleic Acids Res ; 45(6): 3253-3265, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28175342

RESUMEN

Co-expression of physically linked genes occurs surprisingly frequently in eukaryotes. Such chromosomal clustering may confer a selective advantage as it enables coordinated gene regulation at the chromatin level. We studied the chromosomal organization of genes involved in male reproductive development in Arabidopsis thaliana. We developed an in-silico tool to identify physical clusters of co-regulated genes from gene expression data. We identified 17 clusters (96 genes) involved in stamen development and acting downstream of the transcriptional activator MS1 (MALE STERILITY 1), which contains a PHD domain associated with chromatin re-organization. The clusters exhibited little gene homology or promoter element similarity, and largely overlapped with reported repressive histone marks. Experiments on a subset of the clusters suggested a link between expression activation and chromatin conformation: qRT-PCR and mRNA in situ hybridization showed that the clustered genes were up-regulated within 48 h after MS1 induction; out of 14 chromatin-remodeling mutants studied, expression of clustered genes was consistently down-regulated only in hta9/hta11, previously associated with metabolic cluster activation; DNA fluorescence in situ hybridization confirmed that transcriptional activation of the clustered genes was correlated with open chromatin conformation. Stamen development thus appears to involve transcriptional activation of physically clustered genes through chromatin de-condensation.


Asunto(s)
Arabidopsis/genética , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/crecimiento & desarrollo , Duplicación de Gen , Genes de Plantas , Genoma de Planta , Código de Histonas , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Activación Transcripcional
10.
J Exp Bot ; 67(1): 61-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26428062

RESUMEN

One of the biggest unanswered questions in developmental biology is how growth is controlled. Petals are an excellent organ system for investigating growth control in plants: petals are dispensable, have a simple structure, and are largely refractory to environmental perturbations that can alter their size and shape. In recent studies, a number of genes controlling petal growth have been identified. The overall picture of how such genes function in petal organogenesis is beginning to be elucidated. This review will focus on studies using petals as a model system to explore the underlying gene networks that control organ initiation, growth, and final organ morphology.


Asunto(s)
Arabidopsis/genética , Flores/crecimiento & desarrollo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Arabidopsis/anatomía & histología , Arabidopsis/crecimiento & desarrollo , Flores/anatomía & histología , Regulación del Desarrollo de la Expresión Génica
11.
J Exp Bot ; 67(22): 6473-6480, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27838638

RESUMEN

Plant organ growth requires the proper transition from cell proliferation to cell expansion and differentiation. The CIN-TCP transcription factor gene TCP4 and its post-transcriptional regulator microRNA319 play a pivotal role in this process. In this study, we identified a pathway in which the product of the C2H2 zinc finger gene RABBIT EARS (RBE) regulates the transcription of TCP4 during Arabidopsis (Arabidopsis thaliana) petal development. RBE directly represses TCP4 during the early stages of petal development; this contributes to the role of RBE in controlling the growth of petal primordia. We also found that the rbe-1 mutant strongly enhanced the petal phenotypes of tcp4soj6 and mir319a, two mutants with compromised miR319 regulation of TCP4 Our results show that transcriptional and post-transcriptional regulation function together to pattern the spatial and temporal expression of TCP4 This in turn controls petal size and shape in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Proteínas Represoras/fisiología , Factores de Transcripción/fisiología , Arabidopsis/fisiología , Inmunoprecipitación de Cromatina , Flores/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Hibridación in Situ
13.
Development ; 139(12): 2161-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22573623

RESUMEN

The establishment and maintenance of organ boundaries are vital for animal and plant development. In the Arabidopsis flower, three microRNA164 genes (MIR164a, b and c) regulate the expression of CUP-SHAPED COTYLEDON1 (CUC1) and CUC2, which encode key transcriptional regulators involved in organ boundary specification. These three miR164 genes are expressed in distinct spatial and temporal domains that are crucial for their function. Here, we show that the C2H2 zinc finger transcriptional repressor encoded by RABBIT EARS (RBE) regulates the expression of all three miR164 genes. Furthermore, we demonstrate that RBE directly interacts with the promoter of MIR164c and negatively regulates its expression. We also show that the role of RBE in sepal and petal development is mediated in part through the concomitant regulation of the CUC1 and CUC2 gene products. These results indicate that one role of RBE is to fine-tune miR164 expression to regulate the CUC1 and CUC2 effector genes, which, in turn, regulate developmental events required for sepal and petal organogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Arabidopsis/genética , Flores/embriología , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Organogénesis/genética , Proteínas Represoras/metabolismo , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Flores/citología , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Plantas/genética , MicroARNs/metabolismo , Mutación/genética , Especificidad de Órganos/genética , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Proteínas Represoras/genética , Factores de Tiempo
14.
J Exp Bot ; 65(4): 1181-91, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24449383

RESUMEN

The normal biological function of leaves, such as intercepting light and exchanging gases, relies on proper differentiation of adaxial and abaxial polarity. KANADI (KAN) genes, members of the GARP family, are key regulators of abaxial identity in leaf morphogenesis. This study identified a mutant allele (apum23-3) of APUM23, which encodes a Pumilio/PUF domain protein and acts as an enhancer of the kan mutant. Arabidopsis APUM23 has been shown to function in pre-rRNA processing and play pleiotropic roles in plant development. The apum23-3 mutant also synergistically interacts with other leaf polarity mutants, affects proliferation of division-competent cells, and alters the expression of important leaf polarity genes. These phenotypes show that APUM23 has critical functions in plant development, particularly in polarity formation. The PUF gene family is conserved across kingdoms yet it has not been well characterized in plants. These results illuminating the functions of APUM23 suggest a novel role for PUF genes in Arabidopsis leaf development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Unión al ARN/genética , Alelos , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , División Celular/genética , Polaridad Celular/genética , Genes Reporteros , Prueba de Complementación Genética , Inflorescencia/citología , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Mutación , Fenotipo , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Estructura Terciaria de Proteína , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas de Unión al ARN/metabolismo , Plantones/citología , Plantones/genética , Plantones/crecimiento & desarrollo
15.
Plant Cell ; 22(3): 690-702, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20305124

RESUMEN

The Arabidopsis thaliana MADS box transcription factors APETALA3 (AP3) and PISTILLATA (PI) heterodimerize and are required to specify petal identity, yet many details of how this regulatory process is effected are unclear. We have identified three related genes, BHLH136/BANQUO1 (BNQ1), BHLH134/BANQUO2 (BNQ2), and BHLH161/BANQUO3 (BNQ3), as being directly and negatively regulated by AP3 and PI in petals. BNQ1, BNQ2, and BNQ3 encode products belonging to a family of atypical non-DNA binding basic helix-loop-helix (bHLH) proteins that heterodimerize with and negatively regulate bHLH transcription factors. We show that bnq3 mutants have pale-green sepals and carpels and decreased chlorophyll levels, suggesting that BNQ3 has a role in regulating light responses. The ap3 bnq3 double mutant displays pale second-whorl organs, supporting the hypothesis that BNQ3 is downstream of AP3. Consistent with a role in light response, we show that the BNQ gene products regulate the function of HFR1 (for LONG HYPOCOTYL IN FAR-RED1), which encodes a bHLH protein that regulates photomorphogenesis through modulating phytochrome and cryptochrome signaling. The BNQ genes also are required for appropriate regulation of flowering time. Our results suggest that petal identity is specified in part through downregulation of BNQ-dependent photomorphogenic and developmental signaling pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Luz , Proteínas de Dominio MADS/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clorofila/análisis , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación , Filogenia , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
17.
Mol Biol Evol ; 28(12): 3367-80, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21712469

RESUMEN

Although many models have been proposed that could lead to the maintenance of gene duplicates, the ways in which interacting gene duplicates influence each other's evolution and function remain poorly understood. Here, we focus on duplication and loss of the B class MADS box transcription factor genes in the euasterids I and the ramifications of such changes on paralog evolution and their encoded functions. In core eudicots, the B class genes belong to two paralogous lineages whose products form obligate heterodimers. Based on comparative genomic and phylogenetic analyses, we show that five stepwise B class MADS box gene gain or loss events occurred during the radiation of the euasterids I within core eudicots. Gene loss in one sublineage was correlated with a deficit of other sublineage genes. We also show that the gain or loss of B class MADS box gene paralogs were associated with altered protein-protein interactions among the remaining copies. These altered protein interactions were correlated with asymmetric patterns of sequence diversification and selection, suggesting that compensatory changes were driving the evolution of such genes. Furthermore, these B class MADS box gene gain or loss events were associated with the evolutionary divergence of floral morphology in the euasterids I. Together, these observations point to a cooperative strategy by which gene networks evolve, with selection maintaining the overall logic of a network despite changes in individual components.


Asunto(s)
Duplicación de Gen , Redes Reguladoras de Genes , Proteínas de Dominio MADS/genética , Magnoliopsida/genética , Factores de Transcripción/genética , Secuencia de Bases , Evolución Molecular , Genes de Plantas , Variación Genética , Magnoliopsida/metabolismo , Filogenia , Proteínas de Plantas/genética , Selección Genética , Análisis de Secuencia de ADN , Transcripción Genética
18.
Plant Cell ; 21(10): 3041-62, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19880793

RESUMEN

The maturation and ripening of fleshy fruits is a developmental program that synchronizes seed maturation with metabolism, rendering fruit tissues desirable to seed dispersing organisms. Through RNA interference repression, we show that Tomato AGAMOUS-LIKE1 (TAGL1), the tomato (Solanum lycopersicum) ortholog of the duplicated SHATTERPROOF (SHP) MADS box genes of Arabidopsis thaliana, is necessary for fruit ripening. Tomato plants with reduced TAGL1 mRNA produced yellow-orange fruit with reduced carotenoids and thin pericarps. These fruit are also decreased in ethylene, indicating a comprehensive inhibition of maturation mediated through reduced ACC Synthase 2 expression. Furthermore, ectopic expression of TAGL1 in tomato resulted in expansion of sepals and accumulation of lycopene, supporting the role of TAGL1 in ripening. In Arabidopsis, the duplicate SHP1 and SHP2 MADS box genes regulate the development of separation layers essential for pod shatter. Expression of TAGL1 in Arabidopsis failed to completely rescue the shp1 shp2 mutant phenotypes, indicating that TAGL1 has evolved distinct molecular functions compared with its Arabidopsis counterparts. These analyses demonstrate that TAGL1 plays an important role in regulating both fleshy fruit expansion and the ripening process that together are necessary to promote seed dispersal of fleshy fruit. From this broad perspective, SHP1/2 and TAGL1, while distinct in molecular function, regulate similar activities via their necessity for seed dispersal in Arabidopsis and tomato, respectively.


Asunto(s)
Frutas/crecimiento & desarrollo , Frutas/metabolismo , Proteínas de Dominio MADS/fisiología , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/farmacología , Frutas/efectos de los fármacos , Frutas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hibridación in Situ , Solanum lycopersicum/clasificación , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/genética , Proteínas de Dominio MADS/clasificación , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , ARN Ribosómico 18S/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Plant J ; 61(6): 1014-28, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20409275

RESUMEN

Flowers come in a variety of colors, shapes and sizes. Despite this variety, flowers have a very stereotypical architecture, consisting of a series of sterile organs surrounding the reproductive structures. Arabidopsis, as the premier model system for molecular and genetic analyses of plant development, has provided a wealth of insights into how this architecture is specified. With the advent of the completion of the Arabidopsis genome sequence a decade ago, in combination with a rich variety of forward and reverse genetic strategies, many of the genes and regulatory pathways controlling flower initiation, patterning, growth and differentiation have been characterized. A central theme that has emerged from these studies is the complexity and abundance of both positive and negative feedback loops that operate to regulate different aspects of flower formation. Presumably, this considerable degree of feedback regulation serves to promote a robust and stable transition to flowering, even in the face of genetic or environmental perturbations. This review will summarize recent advances in defining the genes, the regulatory pathways, and their interactions, that underpin how the Arabidopsis flower is formed.


Asunto(s)
Arabidopsis/genética , Flores/crecimiento & desarrollo , Proteína AGAMOUS de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Diferenciación Celular , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Meristema/genética , Meristema/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA