Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Hazard Mater ; 460: 132296, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37619282

RESUMEN

The in-situ removal of lindane from spiked soil was studied using cork barriers combined with electrokinetic and ohmic heating soil remediation processes. Both vertical and horizontal cork barriers have been evaluated to retain pollutants mobilized by electro-osmotic flow or volatilized by ohmic heating. Moreover, the addition of surfactant solutions in electrolyte wells has been evaluated to promote the dragging of lindane by electrokinetic fluxes. Results indicated that the drag of lindane by liquid flows is not as important as expected, opposite to what happened with the dragging by gaseous flows. The retention of gaseous lindane was also confirmed in adsorption tests carried out in a column packed with cork granules. The addition of surfactant had a very limited effect on the mobility of lindane, and dragging of this species to the electrode wells or to a permeable reactive barrier. On the contrary, the reactivity of lindane during the electrochemical treatments is relevant due to the electrokinetic basic front promoting the in-situ conversion of lindane into less chlorinated pollutants.

2.
ChemistryOpen ; 12(5): e202200022, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35876395

RESUMEN

This paper focuses on the evaluation of the mobility of four hexachlorocyclohexane (HCH) isomers by soil vapor extraction (SVE) coupled with direct electrokinetic (EK) treatment without adding flushing fluids. SVE was found to be very efficient and remove nearly 70 % of the four HCH in the 15-days of the tests. The application of electrokinetics produced the transport of HCH to the cathode by different electrochemical processes, which were satisfactorily modelled with a 1-D transport equation. The increase in the electric field led to an increase in the transport of pollutants, although 15 days was found to be a very short time for an efficient transportation of the pollutants to the nearness of the cathode. Loss of water content in the vicinity of the cathode warns about the necessity of using electrokinetic flushing technologies instead of simple direct electrokinetics. Thus, results point out that direct electrokinetic treatment without adding flushing fluids produced low current intensities and ohmic heating that contributes negatively to the performance of the SVE process. No relevant differences were found among the removal of the four isomers, neither in SVE nor in EK processes.

3.
Environ Sci Pollut Res Int ; 30(55): 117871-117880, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37875760

RESUMEN

In this work, a new coating of boron-doped diamond ultra-nanocrystalline (U-NBDD), tailored to prevent massive formation of perchlorates during disinfection, is evaluated as electrode for the reclaiming of treated secondary wastewater by the electrochemically assisted disinfection process. Results obtained are compared to those obtained by using a standard electrode (STD) that was evaluated as a standard in previous research showing outstanding performance for this application. First tests were carried out to evaluate the chlorine speciation obtained after the electrolysis of synthetic chloride solutions at two different ranges of current densities. Concentrations of hypochlorite obtained using the U-NBDD anode at 25 mA cm-2 were 1.5-fold higher, outperforming STD anode; however, at 300 mA cm-2, an overturn on the behavior of anodes occurs where the amount of hypochlorite produced on STD anode was 1.5-fold higher. Importantly, at low current density the formation of chlorates and perchlorates is null using U-NBDD. Then, the disinfection of the real effluent of the secondary clarifier of a municipal wastewater treatment facility is assessed, where inactivation of Escherichia coli is achieved at low charge applied per volume electrolyzed (0.08 A h L-1) at 25 mA cm-2 using the U-NBDD. These findings demonstrate the appropriateness of the strategy followed in this work to obtain safer electro-disinfection technologies for the reclaiming of treated wastewater.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Diamante/química , Desinfección/métodos , Ácido Hipocloroso , Percloratos , Electrólisis/métodos , Electrodos , Oxidación-Reducción , Contaminantes Químicos del Agua/química
4.
Chemosphere ; 296: 134052, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35189200

RESUMEN

This paper evaluates the combination of electrokinetic soil flushing (EKSF) with soil vapor extraction (SVE) for the removal of four hexachlorocyclohexane (HCH) isomers contained in a real matrix. Results demonstrate that the combination of EKSF and SVE can be positive, but it is required the application of high electric fields (3 V cm-1) in order to promote a higher temperature in the system, which improves the volatilization of the HCH contained in the system. Electrokinetic transport is also enhanced with the application of higher electric gradients, but these transport processes are slower than the volatilization processes, which are the primary in this system. Hence collection of species in the electrolyte wells is negligible as compared to the compound dragged with air by the SVE but the temperature increase demonstrates a good performance. Combination of EKSF with SVE can efficiently exhaust the four HCH isomers reaching a removal of more than 90% after 15 days of treatment (20% more than values attained by SVE) but it is required the application of high electric fields to promote a higher temperature in the system (to improve the volatilization) and EK transport (to improve the dragging). 1-D transport model can be easily used to estimate the average pore water velocity and the effective diffusion of each compound under the different experimental conditions tested.


Asunto(s)
Contaminantes del Suelo , Suelo , Gases , Hexaclorociclohexano/análisis , Contaminantes del Suelo/análisis , Volatilización
5.
Chemosphere ; 209: 346-352, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29935463

RESUMEN

In this work, the disinfection of highly faecal-polluted surface water was studied using a new electrochemical cell (CabECO® cell, manufactured by CONDIAS) specifically designed to produce ozone in water with very low conductivity. The disinfection tests were carried out in a discontinuous mode to evaluate the influence of the electrode current charge passed. The effect of the current density was also studied in order to optimize the disinfection conditions and to simultaneously prevent the formation of undesirable by-products (chlorates and perchlorates) during the electrolysis. The results demonstrate that this technology is robust and efficient, and it can suitably disinfect water. During electrolysis, the chloride contained in the water was oxidized to hypochlorite, and this compound was combined with ammonia to form chloramines. Both hypochlorite and chloramines (formed by the well-known break point reaction) promoted persistent disinfection and seemed to be mainly responsible for the disinfection attained during the electrochemical process. Chlorate and perchlorate could also be produced, although the low concentrations of chloride in the tested water made them irrelevant. The removal of the total organic carbon under the applied operating conditions was not very efficient (although it reached 50% in 2 h) and the production of trihalomethanes was very low, below 100 ppb for all tests.


Asunto(s)
Cloraminas/química , Desinfección/métodos , Contaminación del Agua/análisis , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA