Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(23): e2305103120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252967

RESUMEN

HIV-1 relies on host RNA polymeraseII (Pol II) to transcribe its genome and uses multiple transcription start sites (TSS), including three consecutive guanosines located near the U3-R junction, to generate transcripts containing three, two, and one guanosine at the 5' end, referred to as 3G, 2G, and 1G RNA, respectively. The 1G RNA is preferentially selected for packaging, indicating that these 99.9% identical RNAs exhibit functional differences and highlighting the importance of TSS selection. Here, we demonstrate that TSS selection is regulated by sequences between the CATA/TATA box and the beginning of R. Furthermore, we have generated two HIV-1 mutants with distinct 2-nucleotide modifications that predominantly express 3G RNA or 1G RNA. Both mutants can generate infectious viruses and undergo multiple rounds of replication in T cells. However, both mutants exhibit replication defects compared to the wild-type virus. The 3G-RNA-expressing mutant displays an RNA genome-packaging defect and delayed replication kinetics, whereas the 1G-RNA-expressing mutant exhibits reduced Gag expression and a replication fitness defect. Additionally, reversion of the latter mutant is frequently observed, consistent with sequence correction by plus-strand DNA transfer during reverse transcription. These findings demonstrate that HIV-1 maximizes its replication fitness by usurping the TSS heterogeneity of host RNA Pol II to generate unspliced RNAs with different specialized roles in viral replication. The three consecutive guanosines at the junction of U3 and R may also maintain HIV-1 genome integrity during reverse transcription. These studies reveal the intricate regulation of HIV-1 RNA and complex replication strategy.


Asunto(s)
VIH-1 , ARN Polimerasa II , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , VIH-1/fisiología , Sitio de Iniciación de la Transcripción , ARN Viral/genética , ARN Viral/metabolismo , Replicación Viral/genética
2.
J Virol ; 98(10): e0116024, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39315813

RESUMEN

HIV-1 must generate infectious virions to spread to new hosts and HIV-1 unspliced RNA (HIV-1 RNA) plays two central roles in this process. HIV-1 RNA serves as an mRNA that is translated to generate proteins essential for particle production and replication, and it is packaged into particles as the viral genome. HIV-1 uses several transcription start sites to generate multiple RNAs that differ by a few nucleotides at the 5' end, including those with one (1G) or three (3G) 5' guanosines. The virus relies on host machinery to translate its RNAs in a cap-dependent manner. Here, we demonstrate that the 5' context of HIV-1 RNA affects the efficiency of translation both in vitro and in cells. Although both RNAs are competent for translation, 3G RNA is translated more efficiently than 1G RNA. The 5' untranslated region (UTR) of 1G and 3G RNAs has previously been shown to fold into distinct structural ensembles. We show that HIV-1 mutants in which the 5' UTR of 1G and 3G RNAs fold into similar structures were translated at similar efficiencies. Thus, the host machinery translates two 99.9% identical HIV-1 RNAs with different efficiencies, and the translation efficiency is regulated by the 5' UTR structure.IMPORTANCEHIV-1 unspliced RNA contains all the viral genetic information and encodes virion structural proteins and enzymes. Thus, the unspliced RNA serves distinct roles as viral genome and translation template, both critical for viral replication. HIV-1 generates two major unspliced RNAs with a 2-nt difference at the 5' end (3G RNA and 1G RNA). The 1G transcript is known to be preferentially packaged over the 3G transcript. Here, we showed that 3G RNA is favorably translated over 1G RNA based on its 5' untranslated region (UTR) RNA structure. In HIV-1 mutants in which the two major transcripts have similar 5' UTR structures, 1G and 3G RNAs are translated similarly. Therefore, HIV-1 generates two 9-kb RNAs with a 2-nt difference, each serving a distinct role dictated by differential 5' UTR structures.


Asunto(s)
Regiones no Traducidas 5' , VIH-1 , Biosíntesis de Proteínas , ARN Viral , VIH-1/genética , Regiones no Traducidas 5'/genética , ARN Viral/genética , ARN Viral/metabolismo , Humanos , Replicación Viral , Conformación de Ácido Nucleico , Regulación Viral de la Expresión Génica , Células HEK293 , Genoma Viral , Mutación
3.
Chem Rev ; 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36728153

RESUMEN

Ionizing radiation such as X-rays and γ-rays has been extensively studied and used in various fields such as medical imaging, radiographic nondestructive testing, nuclear defense, homeland security, and scientific research. Therefore, the detection of such high-energy radiation with high-sensitivity and low-cost-based materials and devices is highly important and desirable. Halide perovskites have emerged as promising candidates for radiation detection due to the large light absorption coefficient, large resistivity, low leakage current, high mobility, and simplicity in synthesis and processing as compared with commercial silicon (Si) and amorphous selenium (a-Se). In this review, we provide an extensive overview of current progress in terms of materials development and corresponding device architectures for radiation detection. We discuss the properties of a plethora of reported compounds involving organic-inorganic hybrid, all-inorganic, all-organic perovskite and antiperovskite structures, as well as the continuous breakthroughs in device architectures, performance, and environmental stability. We focus on the critical advancements of the field in the past few years and we provide valuable insight for the development of next-generation materials and devices for radiation detection and imaging applications.

4.
Br J Cancer ; 131(6): 1092-1105, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39117800

RESUMEN

BACKGROUND: Cyclin-dependent kinase 9 (CDK9) stimulates oncogenic transcriptional pathways in cancer and CDK9 inhibitors have emerged as promising therapeutic candidates. METHODS: The activity of an orally bioavailable CDK9 inhibitor, CDKI-73, was evaluated in prostate cancer cell lines, a xenograft mouse model, and patient-derived tumor explants and organoids. Expression of CDK9 was evaluated in clinical specimens by mining public datasets and immunohistochemistry. Effects of CDKI-73 on prostate cancer cells were determined by cell-based assays, molecular profiling and transcriptomic/epigenomic approaches. RESULTS: CDKI-73 inhibited proliferation and enhanced cell death in diverse in vitro and in vivo models of androgen receptor (AR)-driven and AR-independent models. Mechanistically, CDKI-73-mediated inhibition of RNA polymerase II serine 2 phosphorylation resulted in reduced expression of BCL-2 anti-apoptotic factors and transcriptional defects. Transcriptomic and epigenomic approaches revealed that CDKI-73 suppressed signaling pathways regulated by AR, MYC, and BRD4, key drivers of dysregulated transcription in prostate cancer, and reprogrammed cancer-associated super-enhancers. These latter findings prompted the evaluation of CDKI-73 with the BRD4 inhibitor AZD5153, a combination that was synergistic in patient-derived organoids and in vivo. CONCLUSION: Our work demonstrates that CDK9 inhibition disrupts multiple oncogenic pathways and positions CDKI-73 as a promising therapeutic agent for prostate cancer, particularly aggressive, therapy-resistant subtypes.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina , Epigénesis Genética , Neoplasias de la Próstata , Masculino , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Animales , Ratones , Epigénesis Genética/efectos de los fármacos , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Transcripción Genética/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
5.
Small ; 20(32): e2400679, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38488771

RESUMEN

Chalcogel represents a unique class of meso- to macroporous nanomaterials that offer applications in energy and environmental pursuits. Here, the synthesis of an ion-exchangeable amorphous chalcogel using a nominal composition of K2CoMo2S10 (KCMS) at room temperature is reported. Synchrotron X-ray pair distribution function (PDF), X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) reveal a plausible local structure of KCMS gel consisting of Mo5+ 2 and Mo4+ 3 clusters in the vicinity of di/polysulfides which are covalently linked by Co2+ ions. The ionically bound K+ ions remain in the percolating pores of the Co-Mo-S covalent network. XANES of Co K-edge shows multiple electronic transitions, including quadrupole (1s→3d), shakedown (1s→4p + MLCT), and dipole allowed 1s→4p transitions. Remarkably, despite a lack of regular channels as in some crystalline solids, the amorphous KCMS gel shows ion-exchange properties with UO2 2+ ions. Additionally, it also presents surface sorption via [S∙∙∙∙UO2 2+] covalent interactions. Overall, this study underscores the synthesis of quaternary chalcogels incorporating alkali metals and their potential to advance separation science for cations and oxo-cationic species by integrating a synergy of surface sorption and ion-exchange.

6.
BMC Neurosci ; 25(1): 14, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438838

RESUMEN

Electroencephalogram (EEG) microstate analysis entails finding dynamics of quasi-stable and generally recurrent discrete states in multichannel EEG time series data and relating properties of the estimated state-transition dynamics to observables such as cognition and behavior. While microstate analysis has been widely employed to analyze EEG data, its use remains less prevalent in functional magnetic resonance imaging (fMRI) data, largely due to the slower timescale of such data. In the present study, we extend various data clustering methods used in EEG microstate analysis to resting-state fMRI data from healthy humans to extract their state-transition dynamics. We show that the quality of clustering is on par with that for various microstate analyses of EEG data. We then develop a method for examining test-retest reliability of the discrete-state transition dynamics between fMRI sessions and show that the within-participant test-retest reliability is higher than between-participant test-retest reliability for different indices of state-transition dynamics, different networks, and different data sets. This result suggests that state-transition dynamics analysis of fMRI data could discriminate between different individuals and is a promising tool for performing fingerprinting analysis of individuals.


Asunto(s)
Cognición , Electroencefalografía , Humanos , Reproducibilidad de los Resultados , Factores de Tiempo
7.
J Org Chem ; 89(21): 15686-15693, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39428633

RESUMEN

A unified method toward the synthesis of functionalized diazepines and quinazolines through reorganization of the molecular skeleton has been devised. The process is indulged by electrical energy via a domino N1-N2 bond cleavage followed by concomitant ring closing, initiating from cinnolines and indazoles as designed precursors. Additionally, an intermolecular ring homologation has also been established to synthesize densely functionalized dihydroquinazolines from 2,3-diaryl-indazoles and acetonitrile involving the same electrochemical strategy.

8.
Inorg Chem ; 63(24): 10997-11005, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38833549

RESUMEN

Effective removal of chemically toxic selenium oxoanions at high-capacity and trace levels from contaminated water remains a challenge in current scientific pursuits. Here, we report the functionalization of the MgAl layered double hydroxide with molybdenum-oxysulfide (MoO2S2) anion, referred to as LDH-MoO2S2, and its potential to sequester SeVIO42- and SeIVO32- from aqueous solution. LDH-MoO2S2 nanosheets were synthesized by an ion exchange method in solution. Synchrotron X-ray pair distribution function (PDF) and extended X-ray absorption fine structure (EXAFS) revealed an unexpected transformation of the MoO2S22- to Mo2O2S62- like species during the intercalation process. LDH-MoO2S2 is remarkably efficient in removing SeO42- and SeO32- ions from the ppm to trace level (≤10 ppb), with distribution constant (Kd) ranging from 104 to 105 mL/g. This material showed exceptionally high sorption capacities of 237 and 358 mg/g for SeO42- and SeO32-, respectively. Furthermore, LDH-MoO2S2 demonstrates substantial affinity and efficiency to remove SeO32-/SeO42- even in the presence of competitive ions from contaminated water. Hence, the removal of selenium (VI/IV) oxoanions collectively occurs through reductive precipitation and ion exchange mechanisms. This work provides significant insights into the chemical structure of the MoO2S2 anion into LDH and emphasizes its exceptional potential for high-capacity selenium removal and positioning it as a premier sorbent for selenium oxoanions.

9.
BMC Psychiatry ; 24(1): 322, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664623

RESUMEN

BACKGROUND: The surge in digital media consumption, coupled with the ensuing consequences of digital addiction, has witnessed a rapid increase, particularly after the initiation of the COVID-19 pandemic. Despite some studies exploring specific technological addictions, such as internet or social media addiction, in Bangladesh, there is a noticeable gap in research focusing on digital addiction in a broader context. Thus, this study aims to investigate digital addiction among students taking the university entrance test, examining its prevalence, contributing factors, and geographical distribution using GIS techniques. METHODS: Data from a cross-sectional survey were collected from a total of 2,157 students who were taking the university entrance test at Jahangirnagar University, Bangladesh. A convenience sampling method was applied for data collection using a structured questionnaire. Statistical analyses were performed with SPSS 25 Version and AMOS 23 Version, whereas ArcGIS 10.8 Version was used for the geographical distribution of digital addiction. RESULTS: The prevalence of digital addiction was 33.1% (mean score: 16.05 ± 5.58). Those students who are attempting the test for a second time were more likely to be addicted (42.7% vs. 39.1%), but the difference was not statistically significant. Besides, the potential factors predicted for digital addiction were student status, satisfaction with previous mock tests, average monthly expenditure during the admission test preparation, and depression. No significant difference was found between digital addiction and districts. However, digital addiction was higher in the districts of Manikganj, Rajbari, Shariatpur, and Chittagong Hill Tract areas, including Rangamati, and Bandarban. CONCLUSIONS: The study emphasizes the pressing need for collaborative efforts involving educational policymakers, institutions, and parents to address the growing digital addiction among university-bound students. The recommendations focus on promoting alternative activities, enhancing digital literacy, and imposing restrictions on digital device use, which are crucial steps toward fostering a healthier digital environment and balanced relationship with technology for students.


Asunto(s)
Sistemas de Información Geográfica , Trastorno de Adicción a Internet , Estudiantes , Humanos , Femenino , Masculino , Estudiantes/psicología , Estudiantes/estadística & datos numéricos , Universidades , Estudios Transversales , Prevalencia , Adulto Joven , Trastorno de Adicción a Internet/epidemiología , Trastorno de Adicción a Internet/psicología , Bangladesh/epidemiología , COVID-19/epidemiología , COVID-19/psicología , Conducta Adictiva/epidemiología , Conducta Adictiva/psicología , Adulto , Adolescente , Encuestas y Cuestionarios
10.
Nutr Res Rev ; : 1-22, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39376108

RESUMEN

Biofortification - the process of increasing the concentrations of essential nutrients in staple crops - is a means of addressing the burden of micronutrient deficiencies at a population level via existing food systems, such as smallholder farms. To realise its potential for global impact, we need to understand the factors that are associated with decisions to adopt biofortified crops and food products. We searched the literature to identify adoption determinants, i.e. barriers to (factors negatively associated) or facilitators of (factors positively associated) adoption, of biofortified crops and food products. We found 41 studies reporting facilitator(s) and/or barrier(s) of adoption. We categorised the factors using the Consolidated Framework of Implementation Research 2.0, resulting in a set of factors that enable or constrain adoption of biofortified foods across twenty-four constructs and five domains of this meta-theoretical determinant framework from implementation science. Facilitators of orange sweet potato adoption included knowledge about importance, relative advantage, efficient production and management practices; barriers included lacking timely access to quality vines and market remoteness (28 studies total). Facilitators of vitamin A cassava adoption included awareness of its benefits and access to information; barriers included poor road networks and scarcity of improved technology including inadequate processing/storage facilities (8). Facilitators of high-iron bean adoption included farmers' networking and high farming experience; barriers included low knowledge of bean biofortification (8). Barriers to vitamin A maize adoption included low awareness and concerns regarding yield, texture and aflatoxin contamination (1). These barriers and facilitators may be a starting point for researchers to move towards testing implementation strategies and/or for policymakers to consider before planning scale-up and continuous optimisation of ongoing projects promoting adoption of biofortified crops and food products.

11.
Sensors (Basel) ; 24(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931806

RESUMEN

The Global Navigation Satellite System (GNSS) software-defined receivers offer greater flexibility, cost-effectiveness, customization, and integration capabilities compared to traditional hardware-based receivers, making them essential for a wide range of applications. The continuous evolution of GNSS research and the availability of new features require these software-defined receivers to upgrade continuously to facilitate the latest requirements. The Finnish Geospatial Research Institute (FGI) has been supporting the GNSS research community with its open-source implementations, such as a MATLAB-based GNSS software-defined receiver `FGI-GSRx' and a Python-based implementation `FGI-OSNMA' for utilizing Galileo's Open Service Navigation Message Authentication (OSNMA). In this context, longer datasets are crucial for GNSS software-defined receivers to support adaptation, optimization, and facilitate testing to investigate and develop future-proof receiver capabilities. In this paper, we present an updated version of FGI-GSRx, namely, FGI-GSRx-v2.0.0, which is also available as an open-source resource for the research community. FGI-GSRx-v2.0.0 offers improved performance as compared to its previous version, especially for the execution of long datasets. This is carried out by optimizing the receiver's functionality and offering a newly added parallel processing feature to ensure faster capabilities to process the raw GNSS data. This paper also presents an analysis of some key design aspects of previous and current versions of FGI-GSRx for a better insight into the receiver's functionalities. The results show that FGI-GSRx-v2.0.0 offers about a 40% run time execution improvement over FGI-GSRx-v1.0.0 in the case of the sequential processing mode and about a 59% improvement in the case of the parallel processing mode, with 17 GNSS satellites from GPS and Galileo. In addition, an attempt is made to execute v2.0.0 with MATLAB's own parallel computing toolbox. A detailed performance comparison reveals an improvement of about 43% in execution time over the v2.0.0 parallel processing mode for the same GNSS scenario.

12.
J Asian Nat Prod Res ; : 1-14, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140768

RESUMEN

Ribosomally synthesized post-translationally modified peptides (RiPPs) are a novel category of bioactive natural products (NPs). Streptomyces bacteria are a potential source of many bioactive NPs. Limited opportunities are available to characterize all the bioactive NP gene clusters. In this study, 410 sequences of Streptomyces were analyzed for RiPPs through genome mining using the National Center for Biotechnology Information (NCBI), by combining BAGEL and anti-SMASH. A total of 4098 RiPPs were found; including both classified (lanthipeptide, RiPP-like, bacteriocin, LAPs, lassopeptide, thiopeptides) and nonclassified RiPPs. Soil was identified as a rich habitat for RiPPs. These data may offer alternative future remedies for various health issues.

13.
Brief Bioinform ; 22(2): 1402-1414, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33517367

RESUMEN

The new coronavirus (SARS-CoV-2) halts the world economy and caused unbearable medical emergency due to high transmission rate and also no effective vaccine and drugs has been developed which brought the world pandemic situations. The main protease (Mpro) of SARS-CoV-2 may act as an effective target for drug development due to the conservation level. Herein, we have employed a rigorous literature review pipeline to enlist 3063 compounds from more than 200 plants from the Asian region. Therefore, the virtual screening procedure helps us to shortlist the total compounds into 19 based on their better binding energy. Moreover, the Prime MM-GBSA procedure screened the compound dataset further where curcumin, gartanin and robinetin had a score of (-59.439, -52.421 and - 47.544) kcal/mol, respectively. The top three ligands based on binding energy and MM-GBSA scores have most of the binding in the catalytic groove Cys145, His41, Met165, required for the target protein inhibition. The molecular dynamics simulation study confirms the docked complex rigidity and stability by exploring root mean square deviations, root mean square fluctuations, solvent accessible surface area, radius of gyration and hydrogen bond analysis from simulation trajectories. The post-molecular dynamics analysis also confirms the interactions of the curcumin, gartanin and robinetin in the similar binding pockets. Our computational drug designing approach may contribute to the development of drugs against SARS-CoV-2.


Asunto(s)
COVID-19/virología , Plantas/química , Inhibidores de Proteasas/metabolismo , SARS-CoV-2/enzimología , Humanos , Simulación de Dinámica Molecular
14.
Nature ; 545(7652): 54-59, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28445465

RESUMEN

The development of the nervous system involves a coordinated succession of events including the migration of GABAergic (γ-aminobutyric-acid-releasing) neurons from ventral to dorsal forebrain and their integration into cortical circuits. However, these interregional interactions have not yet been modelled with human cells. Here we generate three-dimensional spheroids from human pluripotent stem cells that resemble either the dorsal or ventral forebrain and contain cortical glutamatergic or GABAergic neurons. These subdomain-specific forebrain spheroids can be assembled in vitro to recapitulate the saltatory migration of interneurons observed in the fetal forebrain. Using this system, we find that in Timothy syndrome-a neurodevelopmental disorder that is caused by mutations in the CaV1.2 calcium channel-interneurons display abnormal migratory saltations. We also show that after migration, interneurons functionally integrate with glutamatergic neurons to form a microphysiological system. We anticipate that this approach will be useful for studying neural development and disease, and for deriving spheroids that resemble other brain regions to assemble circuits in vitro.


Asunto(s)
Neuronas/citología , Prosencéfalo/citología , Prosencéfalo/crecimiento & desarrollo , Esferoides Celulares/citología , Trastorno Autístico/genética , Trastorno Autístico/patología , Línea Celular , Movimiento Celular , Células Cultivadas , Femenino , Neuronas GABAérgicas/citología , Ácido Glutámico/metabolismo , Humanos , Interneuronas/citología , Interneuronas/patología , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/patología , Masculino , Modelos Biológicos , Neurogénesis , Neuronas/patología , Células Madre Pluripotentes/citología , Prosencéfalo/anatomía & histología , Sinapsis/fisiología , Sindactilia/genética , Sindactilia/patología
15.
Int Arch Occup Environ Health ; 96(6): 903-917, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37178233

RESUMEN

BACKGROUND AND OBJECTIVES: The prevalence of occupational injuries among blue-collar workers is higher in the stone-crushing industries due to high-risk and iterant nature of the work. These occupational injuries, in turn, caused workers' ill health, as well as death, which eventually diminish the gross domestic product. We aimed at assessing the attributes of occupational injuries and the risk associated with the hazards in the stone-crushing industry. METHODS: This study utilized a questionnaire base cross-sectional survey that was conducted from September 2019 to February 2020. Data were collected from 32 stone-crushing factories of Eastern Bangladesh and analyzed to show their relationship with different variables. The risk levels associated with the frequent hazardous events were measured using a Semi-Quantitative Risk Assessment Matrix. RESULTS: Most of the injuries were found to occur between 12:00 and 16:00 h. Nearly a fifth of the injuries were serious or critical in nature, caused the workers to be absent at least a week. Exposure to excessive dust, working without personal protective equipment (PPE), and improper lifting and handling techniques caused one-third of injuries. Wrist and hand/fingers, back and lower back, feet/toe, eye, knee, arm, neck and head, and ankle were found as most injured body parts. The primary cause of most injuries was the workers' failure to use PPE. All major hazardous events were found to possess a high-risk level. CONCLUSION: Our finding suggests that stone crushing is one of the most hazardous industries and the practitioners must consider the findings when implementing a risk avoidance policy.


Asunto(s)
Exposición Profesional , Salud Laboral , Traumatismos Ocupacionales , Humanos , Traumatismos Ocupacionales/epidemiología , Estudios Transversales , Medición de Riesgo , Industrias , Exposición Profesional/efectos adversos
16.
J Environ Manage ; 345: 118815, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37633104

RESUMEN

This investigation is centered on the effectiveness of methylene blue (MB), a cationic dye, adsorbed from an aqueous media by H3PO4 activated papaya skin/peels (PSPAC), with initial pH (2-10), contact time (30-180 min), MB dye concentration (varying from 10 to 50 mg/L), and MB dose (0.1-0.5 gm). The findings show that the best optimal conditions for MB dye removal occur at a 6 pH, 0.3 gm dose of PSPAC adsorbent for 10 mg/L MB dye concentration, with 90 min of contact time. To optimize and validate the extraction efficiency of MB dye, a response surface methodology (RSM) study was conducted using a central composite design (CCD) with a regression model showing R2 = 0.9940. FT-IR spectroscopy shows, CO, and O-H stretching functional groups while FE-SEM is assessed to supervise morphological features of the PSPAC adsorbent. The peak adsorption capacity with 46.95 mg/g for the Langmuir isotherm model conveniently satisfies the adsorption process with R2 = 0.9984 while with R2 = 0.999, a kinetic model, pseudo-second-order, confirms MB dye adsorption by PSPAC adsorbent. Moreover, thermodynamic parameters including ΔGᵒ, ΔH°, and ΔS° were computed and found to be spontaneous and exothermic. Furthermore, regeneration studies employed with NaOH (0.1 M) and HCl (0.1 M) solution media show an acceptable MB removal efficiency consecutive up to three cycles. The study highlights that H3PO4 papaya skin/peel (PSPAC) is an effectual, sustainable, reasonably available biosorbent to remove industrial cationic dyes disposal.


Asunto(s)
Carica , Contaminantes Químicos del Agua , Azul de Metileno/química , Colorantes/química , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Concentración de Iones de Hidrógeno , Termodinámica , Agua , Adsorción
17.
Environ Monit Assess ; 195(6): 658, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37166547

RESUMEN

The present study captures the precipitation synthesis of zinc nanoparticles and modification with alumina and oleic acid. The crystalline size evaluated from the XRD profile of the zinc oxide nanoparticles was 18.05 nm but was reduced to 14.20 and 14.50 nm upon modification with oleic acid and alumina. The XRD spectra also showed evidence of the amorphous nature of zinc oxide nanoparticles and subsequent enhancement upon modification. A porous appearance was observed in the SEM instrumentation but seems to be enhanced by modification. The FTIR absorption spectra of the nanoparticles showed a peak associated with ZnO vibration around 449 cm, but the enhanced intensity was observed due to modification. The prepared ZnO-NPs and the modified samples were good materials for the adsorption removal of glyphosate from water, recording efficiencies above 94% at neutral pH and showing a possible incremental trend with an enhanced period of contact and adsorbent dosage. The adsorbents showed maximum capacity that ranged from 82.85 to 82. 97 mg/g. The adsorption models of Freundlich, Temkin, Dubinin-Radushkevich and BET showed excellent fitness. Results from computational results complemented experimental data and were used to identify the sites for adsorption and characteristics of molecular descriptors for the systems.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Plaguicidas , Contaminantes Químicos del Agua , Óxido de Zinc , Óxido de Zinc/química , Nanopartículas del Metal/química , Ácido Oléico , Zinc , Monitoreo del Ambiente , Nanopartículas/química , Agua/química , Óxido de Aluminio , Adsorción , Contaminantes Químicos del Agua/análisis , Cinética , Concentración de Iones de Hidrógeno , Glifosato
18.
J Infect Dis ; 225(2): 317-326, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33844021

RESUMEN

BACKGROUND: Coinfection with human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus type 1 (HTLV-1) diminishes the value of the CD4+ T-cell count in diagnosing AIDS, and increases the rate of HTLV-1-associated myelopathy. It remains elusive how HIV-1/HTLV-1 coinfection is related to such characteristics. We investigated the mutual effect of HIV-1/HTLV-1 coinfection on their integration sites (ISs) and clonal expansion. METHODS: We extracted DNA from longitudinal peripheral blood samples from 7 HIV-1/HTLV-1 coinfected, and 12 HIV-1 and 13 HTLV-1 monoinfected individuals. Proviral loads (PVL) were quantified using real-time polymerase chain reaction (PCR). Viral ISs and clonality were quantified by ligation-mediated PCR followed by high-throughput sequencing. RESULTS: PVL of both HIV-1 and HTLV-1 in coinfected individuals was significantly higher than that of the respective virus in monoinfected individuals. The degree of oligoclonality of both HIV-1- and HTLV-1-infected cells in coinfected individuals was also greater than in monoinfected subjects. ISs of HIV-1 in cases of coinfection were more frequently located in intergenic regions and transcriptionally silent regions, compared with HIV-1 monoinfected individuals. CONCLUSIONS: HIV-1/HTLV-1 coinfection makes an impact on the distribution of viral ISs and clonality of virus-infected cells and thus may alter the risks of both HTLV-1- and HIV-1-associated disease.


Asunto(s)
Coinfección , Infecciones por VIH/complicaciones , VIH-1 , Infecciones por HTLV-I/complicaciones , Virus Linfotrópico T Tipo 1 Humano , Paraparesia Espástica Tropical/epidemiología , Recuento de Linfocito CD4 , Infecciones por VIH/epidemiología , VIH-1/genética , VIH-1/aislamiento & purificación , Infecciones por HTLV-I/epidemiología , Secuenciación de Nucleótidos de Alto Rendimiento , Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 1 Humano/aislamiento & purificación , Humanos , Paraparesia Espástica Tropical/diagnóstico , Provirus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Angew Chem Int Ed Engl ; 62(8): e202213581, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36526582

RESUMEN

Hyperpolarized orthohydrogen (o-H2 ) is a frequent product of parahydrogen-based hyperpolarization approaches like signal amplification by reversible exchange (SABRE), where the hyperpolarized o-H2 signal is usually absorptive. We describe a novel manifestation of this effect wherein large antiphase o-H2 signals are observed, with 1 H enhancements up to ≈500-fold (effective polarization PH ≈1.6 %). This anomalous effect is attained only when using an intact heterogeneous catalyst constructed using a metal-organic framework (MOF) and is qualitatively independent of substrate nature. This seemingly paradoxical observation is analogous to the "partial negative line" (PNL) effect recently explained in the context of Parahydrogen Induced Polarization (PHIP) by Ivanov and co-workers. The two-spin order of the o-H2 resonance is manifested by a two-fold higher Rabi frequency, and the lifetime of the antiphase HP o-H2 resonance is extended by several-fold.

20.
BMC Microbiol ; 22(1): 323, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36581815

RESUMEN

Recent years, Burkholderia species have emerged as a new source of natural products (NPs) with increasing attractions. Genome mining suggests the Burkholderia genomes include many natural product biosynthetic gene clusters (BGCs) which are new targets for drug discovery. In order to collect more Burkholderia, here, a strain S-53 was isolated from the soil samples on a mountain area in Changde, P.R. China and verified by comparative genetic analysis to belong to Burkholderia. The complete genome of Burkholderia strain S-53 is 8.2 Mbps in size with an average G + C content of 66.35%. Its taxonomy was both characterized by 16S rRNA- and whole genome-based phylogenetic trees. Bioinformatic prediction in silico revealed it has a total of 15 NP BGCs, some of which may encode unknown products. It is expectable that availability of these BGCs will speed up the identification of new secondary metabolites from Burkholderia and help us understand how sophisticated BGC regulation works.


Asunto(s)
Burkholderia , Burkholderia/genética , Genoma Bacteriano , Filogenia , ARN Ribosómico 16S/genética , Secuenciación Completa del Genoma , Familia de Multigenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA