Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Med ; 28(1): 131, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36348276

RESUMEN

BACKGROUND: Respiratory failure in severe coronavirus disease 2019 (COVID-19) is associated with a severe inflammatory response. Acetylcholine (ACh) reduces systemic inflammation in experimental bacterial and viral infections. Pyridostigmine increases the half-life of endogenous ACh, potentially reducing systemic inflammation. We aimed to determine if pyridostigmine decreases a composite outcome of invasive mechanical ventilation (IMV) and death in adult patients with severe COVID-19. METHODS: We performed a double-blinded, placebo-controlled, phase 2/3 randomized controlled trial of oral pyridostigmine (60 mg/day) or placebo as add-on therapy in adult patients admitted due to confirmed severe COVID-19 not requiring IMV at enrollment. The primary outcome was a composite of IMV or death by day 28. Secondary outcomes included reduction of inflammatory markers and circulating cytokines, and 90-day mortality. Adverse events (AEs) related to study treatment were documented and described. RESULTS: We recruited 188 participants (94 per group); 112 (59.6%) were men; the median (IQR) age was 52 (44-64) years. The study was terminated early due to a significant reduction in the primary outcome in the treatment arm and increased difficulty with recruitment. The primary outcome occurred in 22 (23.4%) participants in the placebo group vs. 11 (11.7%) in the pyridostigmine group (hazard ratio, 0.47, 95% confidence interval 0.24-0.9; P = 0.03). This effect was driven by a reduction in mortality (19 vs. 8 deaths, respectively). CONCLUSION: Our data indicate that adding pyridostigmine to standard care reduces mortality among patients hospitalized for severe COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Adulto , Masculino , Humanos , Persona de Mediana Edad , Femenino , Bromuro de Piridostigmina/uso terapéutico , SARS-CoV-2 , Respiración Artificial , Inflamación , Resultado del Tratamiento
2.
Front Med (Lausanne) ; 10: 1236702, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37727759

RESUMEN

Introduction: Few studies have evaluated the presence of Post COVID-19 conditions (PCC) in people from Latin America, a region that has been heavily afflicted by the COVID-19 pandemic. In this study, we describe the frequency, co-occurrence, predictors, and duration of 23 symptoms in a cohort of Mexican patients with PCC. Methods: We prospectively enrolled and followed adult patients hospitalized for severe COVID-19 at a tertiary care centre in Mexico City. The incidence of PCC symptoms was determined using questionnaires. Unsupervised clustering of PCC symptom co-occurrence and Kaplan-Meier analyses of symptom persistence were performed. The effect of baseline clinical characteristics was evaluated using Cox regression models and reported with hazard ratios (HR). Results: We found that amongst 192 patients with PCC, respiratory problems were the most prevalent and commonly co-occurred with functional activity impairment. 56% had ≥5 persistent symptoms. Symptom persistence probability at 360 days 0.78. Prior SARS-CoV-2 vaccination and infection during the Delta variant wave were associated with a shorter duration of PCC. Male sex was associated with a shorter duration of functional activity impairment and respiratory symptoms. Hypertension and diabetes were associated with a longer duration of functional impairment. Previous vaccination accelerated PCC recovery. Discussion: In our cohort, PCC symptoms were frequent (particularly respiratory and neurocognitive ones) and persistent. Importantly, prior SARS-CoV-2 vaccination resulted in a shorter duration of PCC.

3.
Front Immunol ; 11: 581911, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33679685

RESUMEN

The cholinergic system is present in both bacteria and mammals and regulates inflammation during bacterial respiratory infections through neuronal and non-neuronal production of acetylcholine (ACh) and its receptors. However, the presence of this system during the immunopathogenesis of pulmonary tuberculosis (TB) in vivo and in its causative agent Mycobacterium tuberculosis (Mtb) has not been studied. Therefore, we used an experimental model of progressive pulmonary TB in BALB/c mice to quantify pulmonary ACh using high-performance liquid chromatography during the course of the disease. In addition, we performed immunohistochemistry in lung tissue to determine the cellular expression of cholinergic system components, and then administered nicotinic receptor (nAChR) antagonists to validate their effect on lung bacterial burden, inflammation, and pro-inflammatory cytokines. Finally, we subjected Mtb cultures to colorimetric analysis to reveal the production of ACh and the effect of ACh and nAChR antagonists on Mtb growth. Our results show high concentrations of ACh and expression of its synthesizing enzyme choline acetyltransferase (ChAT) during early infection in lung epithelial cells and macrophages. During late progressive TB, lung ACh upregulation was even higher and coincided with ChAT and α7 nAChR subunit expression in immune cells. Moreover, the administration of nAChR antagonists increased pro-inflammatory cytokines, reduced bacillary loads and synergized with antibiotic therapy in multidrug resistant TB. Finally, in vitro studies revealed that the bacteria is capable of producing nanomolar concentrations of ACh in liquid culture. In addition, the administration of ACh and nicotinic antagonists to Mtb cultures induced or inhibited bacterial proliferation, respectively. These results suggest that Mtb possesses a cholinergic system and upregulates the lung non-neuronal cholinergic system, particularly during late progressive TB. The upregulation of the cholinergic system during infection could aid both bacterial growth and immunomodulation within the lung to favor disease progression. Furthermore, the therapeutic efficacy of modulating this system suggests that it could be a target for treating the disease.


Asunto(s)
Sistema Colinérgico no Neuronal/fisiología , Tuberculosis Pulmonar/metabolismo , Tuberculosis Pulmonar/patología , Acetilcolina/metabolismo , Animales , Colina O-Acetiltransferasa/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Inflamación/metabolismo , Inflamación/patología , Pulmón/metabolismo , Pulmón/patología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Antagonistas Nicotínicos/farmacología , Sistema Colinérgico no Neuronal/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Regulación hacia Arriba/fisiología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
4.
Expert Rev Respir Med ; 12(5): 427-440, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29575946

RESUMEN

INTRODUCTION: Tuberculosis (TB) is the first cause of mortality by a single infectious agent in the world, causing more than one million deaths worldwide as reported by the World Health Organization (WHO). For the optimal control of TB infection, a protective immune response that limits bacterial spread without causing damage to the host is essential. Although most healthy individuals are capable of generating protective responses, patients who suffer pulmonary TB commonly present a defective immune function. Areas covered: We intend to highlight the potential of novel immunotherapeutic strategies that enhance and promote effective immune responses. The following methodology was undertaken for establishing a literature search: the authors used PubMed to search for 'Pulmonary Tuberculosis' and keywords that denoted the novel immunotherapeutic strategies discussed in length in the text including antibodies, antimicrobial peptides, cell therapy, cytokines and gene therapy. Expert commentary: The current therapeutic regimens for this disease are complex and involve the prolonged use of multiple antibiotics with diverse side effects that lead to therapeutic failure and bacterial resistance. The standard appliance of immunotherapy and its deployment to vulnerable populations will require coordinated work and may serve as a powerful tool to combat the ensuing threat of TB.


Asunto(s)
Inmunoterapia , Tuberculosis Pulmonar/terapia , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA