Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(13): e2025606119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35312361

RESUMEN

SignificanceThe permanent disappearance of mass-independent sulfur isotope fractionation (S-MIF) from the sedimentary record has become a widely accepted proxy for atmospheric oxygenation. This framework, however, neglects inheritance from oxidative weathering of pre-existing S-MIF-bearing sedimentary sulfide minerals (i.e., crustal memory), which has recently been invoked to explain apparent discrepancies within the sulfur isotope record. Herein, we demonstrate that such a crustal memory effect does not confound the Carletonville S-isotope record; rather, the pronounced Δ33S values identified within the Rooihoogte Formation represent the youngest known unequivocal oxygen-free photochemical products. Previously observed 33S-enrichments within the succeeding Timeball Hill Formation, however, contrasts with our record, revealing kilometer-scale heterogeneities that highlight significant uncertainties in our understanding of the dynamics of Earth's oxygenation.

2.
Proc Natl Acad Sci U S A ; 114(13): E2571-E2579, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28289223

RESUMEN

Emerging evidence suggests that atmospheric oxygen may have varied before rising irreversibly ∼2.4 billion years ago, during the Great Oxidation Event (GOE). Significantly, however, pre-GOE atmospheric aberrations toward more reducing conditions-featuring a methane-derived organic-haze-have recently been suggested, yet their occurrence, causes, and significance remain underexplored. To examine the role of haze formation in Earth's history, we targeted an episode of inferred haze development. Our redox-controlled (Fe-speciation) carbon- and sulfur-isotope record reveals sustained systematic stratigraphic covariance, precluding nonatmospheric explanations. Photochemical models corroborate this inference, showing Δ36S/Δ33S ratios are sensitive to the presence of haze. Exploiting existing age constraints, we estimate that organic haze developed rapidly, stabilizing within ∼0.3 ± 0.1 million years (Myr), and persisted for upward of ∼1.4 ± 0.4 Myr. Given these temporal constraints, and the elevated atmospheric CO2 concentrations in the Archean, the sustained methane fluxes necessary for haze formation can only be reconciled with a biological source. Correlative δ13COrg and total organic carbon measurements support the interpretation that atmospheric haze was a transient response of the biosphere to increased nutrient availability, with methane fluxes controlled by the relative availability of organic carbon and sulfate. Elevated atmospheric methane concentrations during haze episodes would have expedited planetary hydrogen loss, with a single episode of haze development providing up to 2.6-18 × 1018 moles of O2 equivalents to the Earth system. Our findings suggest the Neoarchean likely represented a unique state of the Earth system where haze development played a pivotal role in planetary oxidation, hastening the contingent biological innovations that followed.


Asunto(s)
Atmósfera/química , Planeta Tierra , Oxígeno/análisis , Modelos Teóricos , Oxígeno/química , Factores de Tiempo
3.
Nat Ecol Evol ; 7(9): 1398-1407, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37537385

RESUMEN

The reverse tricarboxylic acid (rTCA) cycle is touted as a primordial mode of carbon fixation due to its autocatalytic propensity and oxygen intolerance. Despite this inferred antiquity, however, the earliest rock record affords scant supporting evidence. In fact, based on the chimeric inheritance of rTCA cycle steps within the Chlorobiaceae, even the use of the chemical fossil record of this group is now subject to question. While the 1.64-billion-year-old Barney Creek Formation contains chemical fossils of the earliest known putative Chlorobiaceae-derived carotenoids, interferences from the accompanying hydrocarbon matrix have hitherto precluded the carbon isotope measurements necessary to establish the physiology of the organisms that produced them. Overcoming this obstacle, here we report a suite of compound-specific carbon isotope measurements identifying a cyanobacterially dominated ecosystem featuring heterotrophic bacteria. We demonstrate chlorobactane is 13C-depleted when compared to contemporary equivalents, showing only slight 13C-enrichment over co-existing cyanobacterial carotenoids. The absence of this diagnostic isotopic fingerprint, in turn, confirms phylogenomic hypotheses that call for the late assembly of the rTCA cycle and, thus, the delayed acquisition of autotrophy within the Chlorobiaceae. We suggest that progressive oxygenation of the Earth System caused an increase in the marine sulfate inventory thereby providing the selective pressure to fuel the Neoproterozoic shift towards energy-efficient photoautotrophy within the Chlorobiaceae.


Asunto(s)
Chlorobi , Cianobacterias , Chlorobi/química , Chlorobi/metabolismo , Ácidos Tricarboxílicos/metabolismo , Ecosistema , Isótopos de Carbono , Ciclo del Carbono , Carotenoides/metabolismo
4.
Nat Commun ; 14(1): 279, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650167

RESUMEN

Understanding the timing and trajectory of atmospheric oxygenation remains fundamental to deciphering its causes and consequences. Given its origin in oxygen-free photochemistry, mass-independent sulfur isotope fractionation (S-MIF) is widely accepted as a geochemical fingerprint of an anoxic atmosphere. Nevertheless, S-MIF recycling through oxidative sulfide weathering-commonly termed the crustal memory effect (CME)-potentially decouples the multiple sulfur isotope (MSI) record from coeval atmospheric chemistry. Herein, however, after accounting for unrecognised temporal and spatial biases within the Archaean-early-Palaeoproterozoic MSI record, we demonstrate that the global expression of the CME is barely resolvable; thereby validating S-MIF as a tracer of contemporaneous atmospheric chemistry during Earth's incipient oxygenation. Next, utilising statistical approaches, supported by new MSI data, we show that the reconciliation of adjacent, yet seemingly discrepant, South African MSI records requires that the rare instances of post-2.3-billion-year-old S-MIF are stratigraphically restricted. Accepting others' primary photochemical interpretation, our approach demands that these implied atmospheric dynamics were ephemeral, operating on sub-hundred-thousand-year timescales. Importantly, these apparent atmospheric relapses were fundamentally different from older putative oxygenation episodes, implicating an intermediate, and potentially uniquely feedback-sensitive, Earth system state in the wake of the Great Oxidation Event.

5.
Nat Commun ; 11(1): 1709, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32249783

RESUMEN

Earth's surface underwent a dramatic transition ~2.3 billion years ago when atmospheric oxygen first accumulated during the Great Oxidation Event, but the detailed composition of the reducing early atmosphere is not well known. Here we develop mercury (Hg) stable isotopes as a proxy for paleoatmospheric chemistry and use Hg isotope data from 2.5 billion-year-old sedimentary rocks to examine changes in the Late Archean atmosphere immediately prior to the Great Oxidation Event. These sediments preserve evidence of strong photochemical transformations of mercury in the absence of molecular oxygen. In addition, these geochemical records combined with previously published multi-proxy data support a vital role for methane in Earth's early atmosphere.

6.
Environ Sci Pollut Res Int ; 26(5): 4667-4679, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30565118

RESUMEN

China is a massive mercury emitter, responsible for a quarter of the world's mercury emissions, which transit the atmosphere and accumulate throughout its watercourses. The Changjiang (Yangtze) River is the third largest river in the world, integrating mercury emissions over its 1.8 × 106 km2 catchment and channelling them to the East China Sea where they can be buried. Despite its potential global significance, the importance of the East China Sea as a terminal mercury sink remains poorly known. To address this knowledge gap, total mercury and methylmercury concentrations were determined from 51 surface sediment samples revealing their spatial distribution, whilst demonstrating the overall pollution status of the East China Sea. Sedimentary mercury distributions beneath the East China Sea are spatially heterogeneous, with high mercury concentrations (> 25 ng g-1) corresponding to areas of fine-grained sediment accumulation. In contrast, some sites of fine-grained sediment deposition have significantly lower values of methylmercury (< 15 ng g-1), such as the Changjiang estuary and some isolated offshore areas. Fine-grained particles and organic matter availability appear to exert the dominant control over sedimentary mercury distribution in the East China Sea, whereas in situ methylation serves as an additional control governing methylmercury accumulation. Estimated annual sedimentary fluxes of mercury in the East China Sea are 51 × 106 g, which accounts for 9% of China's annual mercury emissions.


Asunto(s)
Sedimentos Geológicos/análisis , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Contaminantes Químicos del Agua/análisis , China , Monitoreo del Ambiente , Estuarios , Océano Pacífico , Ríos
7.
Nat Commun ; 9(1): 978, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29515129

RESUMEN

The marine nitrogen cycle is dominated by redox-controlled biogeochemical processes and, therefore, is likely to have been revolutionised in response to Earth-surface oxygenation. The details, timing, and trajectory of nitrogen cycle evolution, however, remain elusive. Here we couple nitrogen and carbon isotope records from multiple drillcores through the Rooihoogte-Timeball Hill Formations from across the Carletonville area of the Kaapvaal Craton where the Great Oxygenation Event (GOE) and its aftermath are recorded. Our data reveal that aerobic nitrogen cycling, featuring metabolisms involving nitrogen oxyanions, was well established prior to the GOE and that ammonium may have dominated the dissolved nitrogen inventory. Pronounced signals of diazotrophy imply a stepwise evolution, with a temporary intermediate stage where both ammonium and nitrate may have been scarce. We suggest that the emergence of the modern nitrogen cycle, with metabolic processes that approximate their contemporary balance, was retarded by low environmental oxygen availability.


Asunto(s)
Fijación del Nitrógeno , Nitrógeno/química , Oxígeno/química , Ecosistema , Sedimentos Geológicos/química , Historia Antigua , Ciclo del Nitrógeno , Paleontología/historia , Agua de Mar/química , Sudáfrica
8.
Science ; 324(5931): 1179-82, 2009 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19478179

RESUMEN

The 260-million-year-old Emeishan volcanic province of southwest China overlies and is interbedded with Middle Permian carbonates that contain a record of the Guadalupian mass extinction. Sections in the region thus provide an opportunity to directly monitor the relative timing of extinction and volcanism within the same locations. These show that the onset of volcanism was marked by both large phreatomagmatic eruptions and extinctions amongst fusulinacean foraminifers and calcareous algae. The temporal coincidence of these two phenomena supports the idea of a cause-and-effect relationship. The crisis predates the onset of a major negative carbon isotope excursion that points to subsequent severe disturbance of the ocean-atmosphere carbon cycle.


Asunto(s)
Isótopos de Carbono/análisis , Extinción Biológica , Erupciones Volcánicas , Animales , Atmósfera , Carbonatos/análisis , China , Ecosistema , Eucariontes , Fósiles , Sedimentos Geológicos/análisis , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA