Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 176(3): 535-548.e24, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30661751

RESUMEN

The splicing of pre-mRNAs into mature transcripts is remarkable for its precision, but the mechanisms by which the cellular machinery achieves such specificity are incompletely understood. Here, we describe a deep neural network that accurately predicts splice junctions from an arbitrary pre-mRNA transcript sequence, enabling precise prediction of noncoding genetic variants that cause cryptic splicing. Synonymous and intronic mutations with predicted splice-altering consequence validate at a high rate on RNA-seq and are strongly deleterious in the human population. De novo mutations with predicted splice-altering consequence are significantly enriched in patients with autism and intellectual disability compared to healthy controls and validate against RNA-seq in 21 out of 28 of these patients. We estimate that 9%-11% of pathogenic mutations in patients with rare genetic disorders are caused by this previously underappreciated class of disease variation.


Asunto(s)
Predicción/métodos , Precursores del ARN/genética , Empalme del ARN/genética , Algoritmos , Empalme Alternativo/genética , Trastorno Autístico/genética , Aprendizaje Profundo , Exones/genética , Humanos , Discapacidad Intelectual/genética , Intrones/genética , Redes Neurales de la Computación , Precursores del ARN/metabolismo , Sitios de Empalme de ARN/genética , Sitios de Empalme de ARN/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA