Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(21): 11421-11431, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32393642

RESUMEN

Phase separation of intrinsically disordered proteins (IDPs) commonly underlies the formation of membraneless organelles, which compartmentalize molecules intracellularly in the absence of a lipid membrane. Identifying the protein sequence features responsible for IDP phase separation is critical for understanding physiological roles and pathological consequences of biomolecular condensation, as well as for harnessing phase separation for applications in bioinspired materials design. To expand our knowledge of sequence determinants of IDP phase separation, we characterized variants of the intrinsically disordered RGG domain from LAF-1, a model protein involved in phase separation and a key component of P granules. Based on a predictive coarse-grained IDP model, we identified a region of the RGG domain that has high contact probability and is highly conserved between species; deletion of this region significantly disrupts phase separation in vitro and in vivo. We determined the effects of charge patterning on phase behavior through sequence shuffling. We designed sequences with significantly increased phase separation propensity by shuffling the wild-type sequence, which contains well-mixed charged residues, to increase charge segregation. This result indicates the natural sequence is under negative selection to moderate this mode of interaction. We measured the contributions of tyrosine and arginine residues to phase separation experimentally through mutagenesis studies and computationally through direct interrogation of different modes of interaction using all-atom simulations. Finally, we show that despite these sequence perturbations, the RGG-derived condensates remain liquid-like. Together, these studies advance our fundamental understanding of key biophysical principles and sequence features important to phase separation.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas Intrínsecamente Desordenadas/química , ARN Helicasas/química , Sustitución de Aminoácidos , Arginina/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Citoplasma/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Microorganismos Modificados Genéticamente , Simulación de Dinámica Molecular , Transición de Fase , Dominios Proteicos , ARN Helicasas/genética , ARN Helicasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Temperatura , Tirosina/química
2.
Nat Commun ; 9(1): 2985, 2018 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-30061688

RESUMEN

Many intrinsically disordered proteins self-assemble into liquid droplets that function as membraneless organelles. Because of their biological importance and ability to colocalize molecules at high concentrations, these protein compartments represent a compelling target for bio-inspired materials engineering. Here we manipulated the intrinsically disordered, arginine/glycine-rich RGG domain from the P granule protein LAF-1 to generate synthetic membraneless organelles with controllable phase separation and cargo recruitment. First, we demonstrate enzymatically triggered droplet assembly and disassembly, whereby miscibility and RGG domain valency are tuned by protease activity. Second, we control droplet composition by selectively recruiting cargo molecules via protein interaction motifs. We then demonstrate protease-triggered controlled release of cargo. Droplet assembly and cargo recruitment are robust, occurring in cytoplasmic extracts and in living mammalian cells. This versatile system, which generates dynamic membraneless organelles with programmable phase behavior and composition, has important applications for compartmentalizing collections of proteins in engineered cells and protocells.


Asunto(s)
Gránulos Citoplasmáticos/química , Proteínas Intrínsecamente Desordenadas/química , Orgánulos/química , Secuencias de Aminoácidos , Animales , Caenorhabditis elegans , Línea Celular Tumoral , Clonación Molecular , Citoplasma/química , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Oxidación-Reducción , Permeabilidad , Dominios Proteicos , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/química , Solubilidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA