Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Plant Cell Environ ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946377

RESUMEN

The acclimation of the green algae Chlamydomoas reinhardtii to high light (HL) has been studied predominantly under continuous illumination of the cells. Here, we investigated the impact of fluctuating HL in alternation with either low light (LL) or darkness on photosynthetic performance and on photoprotective responses. Compared to intervening LL phases, dark phases led to (1) more pronounced reduction of the photosystem II quantum efficiency, (2) reduced degradation of the PsbS protein, (3) lower energy dissipation capacity and (4) an increased pool size of the xanthophyll cycle pigments. These characteristics indicate increased photo-oxidative stress when HL periods are interrupted by dark phases instead of LL phases. This overall trend was similar when comparing long (8 h) and short (30 min) HL phases being interrupted by long (16 h) and short (60 min) phases of dark or low light, respectively. Only the degradation of PsbS was clearly more efficient during long (16 h) LL phases when compared to short (60 min) LL phases.

2.
Physiol Plant ; 176(2): e14233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38433102

RESUMEN

The performance and acclimation strategies of Chlamydomonas reinhardtii under stress conditions are typically studied in response to single stress factors. Under natural conditions, however, organisms rarely face only one stressor at a time. Here, we investigated the impact of combined salt and high light stress on the photoprotective response of C. reinhardtii. Compared to the single stress factors, the combination of both stressors decreased the photosynthetic performance, while the activation of energy dissipation remained unaffected. However, the PsbS protein was strongly accumulated and the conversion of violaxanthin to zeaxanthin was enhanced. These results support an important photoprotective function of PsbS and zeaxanthin independently of energy dissipation under combined salt and high light stress in C. reinhardtii.


Asunto(s)
Chlamydomonas reinhardtii , Zeaxantinas , Estrés Salino , Aclimatación , Fotosíntesis
3.
Plant Cell Physiol ; 64(10): 1220-1230, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37556318

RESUMEN

The generation of violaxanthin (Vx) de-epoxidase (VDE), photosystem II subunit S (PsbS) and zeaxanthin (Zx) epoxidase (ZEP) (VPZ) lines, which simultaneously overexpress VDE, PsbS and ZEP, has been successfully used to accelerate the kinetics of the induction and relaxation of non-photochemical quenching (NPQ). Here, we studied the impact of the overexpression of VDE and ZEP on the conversion of the xanthophyll cycle pigments in VPZ lines of Arabidopsis thaliana and Nicotiana tabacum. The protein amount of both VDE and ZEP was determined to be increased to about 3- to 5-fold levels of wild-type (WT) plants for both species. Compared to WT plants, the conversion of Vx to Zx, and hence VDE activity, was only marginally accelerated in VPZ lines, whereas the conversion of Zx to Vx, and thus ZEP activity, was strongly increased in VPZ lines. This indicates that the amount of ZEP but not the amount of VDE is a critical determinant of the equilibrium of the de-epoxidation state of xanthophyll cycle pigments under saturating light conditions. Comparing the two steps of epoxidation, particularly the second step (antheraxanthin to Vx) was found to be accelerated in VPZ lines, implying that the intermediate Ax is released into the membrane during epoxidation by ZEP.


Asunto(s)
Arabidopsis , Zeaxantinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Xantófilas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Luz
4.
New Phytol ; 237(1): 160-176, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36378135

RESUMEN

Understanding photosynthesis in natural, dynamic light environments requires knowledge of long-term acclimation, short-term responses, and their mechanistic interactions. To approach the latter, we systematically determined and characterized light-environmental effects on thylakoid ion transport-mediated short-term responses during light fluctuations. For this, Arabidopsis thaliana wild-type and mutants of the Cl- channel VCCN1 and the K+ exchange antiporter KEA3 were grown under eight different light environments and characterized for photosynthesis-associated parameters and factors in steady state and during light fluctuations. For a detailed characterization of selected light conditions, we monitored ion flux dynamics at unprecedented high temporal resolution by a modified spectroscopy approach. Our analyses reveal that daily light intensity sculpts photosynthetic capacity as a main acclimatory driver with positive and negative effects on the function of KEA3 and VCCN1 during high-light phases, respectively. Fluctuations in light intensity boost the accumulation of the photoprotective pigment zeaxanthin (Zx). We show that KEA3 suppresses Zx accumulation during the day, which together with its direct proton transport activity accelerates photosynthetic transition to lower light intensities. In summary, both light-environment factors, intensity and variability, modulate the function of thylakoid ion transport in dynamic photosynthesis with distinct effects on lumen pH, Zx accumulation, photoprotection, and photosynthetic efficiency.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Tilacoides/metabolismo , Proteínas de Arabidopsis/metabolismo , Fotosíntesis/fisiología , Luz , Aclimatación , Transporte Iónico
5.
Physiol Plant ; 175(5): e13998, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882279

RESUMEN

Proper short- and long-term acclimation to different growth light intensities is essential for the survival and competitiveness of plants in the field. High light exposure is known to induce the down-regulation and photoinhibition of photosystem II (PSII) activity to reduce photo-oxidative stress. The xanthophyll zeaxanthin (Zx) serves central photoprotective functions in these processes. We have shown in recent work with different plant species (Arabidopsis, tobacco, spinach and pea) that photoinhibition of PSII and degradation of the PSII reaction center protein D1 is accompanied by the inactivation and degradation of zeaxanthin epoxidase (ZEP), which catalyzes the reconversion of Zx to violaxanthin. Different high light sensitivity of the above-mentioned species correlated with differential down-regulation of both PSII and ZEP activity. Applying light and electron microscopy, chlorophyll fluorescence, and protein and pigment analyses, we investigated the acclimation properties of these species to different growth light intensities with respect to the ability to adjust their photoprotective strategies. We show that the species differ in phenotypic plasticity in response to short- and long-term high light conditions at different morphological and physiological levels. However, the close co-regulation of PSII and ZEP activity remains a common feature in all species and under all conditions. This work supports species-specific acclimation strategies and properties in response to high light stress and underlines the central role of the xanthophyll Zx in photoprotection.


Asunto(s)
Arabidopsis , Luz , Oxidorreductasas/metabolismo , Xantófilas/metabolismo , Zeaxantinas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Luteína/metabolismo , Arabidopsis/metabolismo , Aclimatación , Clorofila/metabolismo , Fotosíntesis
6.
Plant Cell Physiol ; 63(8): 1091-1100, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35674150

RESUMEN

The xanthophyll zeaxanthin (Zx) serves important photoprotective functions in chloroplasts and is particularly involved in the dissipation of excess light energy as heat in the antenna of photosystem II (PSII). Zx accumulates under high-light (HL) conditions in thylakoid membranes and is reconverted to violaxanthin by Zx epoxidase (ZEP) in low light or darkness. ZEP activity is completely inhibited under long-lasting HL stress, and the ZEP protein becomes degraded along with the PSII subunit D1 during photoinhibition of PSII. This ZEP inactivation ensures that high levels of Zx are maintained under harsh HL stress. The mechanism of ZEP inactivation is unknown. Here, we investigated ZEP inactivation by reactive oxygen species (ROS) under in vitro conditions. Our results show that ZEP activity is completely inhibited by hydrogen peroxide (H2O2), whereas inhibition by singlet oxygen or superoxide seems rather unlikely. Due to the limited information about the amount of singlet oxygen and superoxide accumulating under the applied experimental conditions, however, a possible inhibition of ZEP activity by these two ROS cannot be generally excluded. Despite this limitation, our data support the hypothesis that the accumulation of ROS, in particular H2O2, might be responsible for HL-induced inactivation of ZEP under in vivo conditions.


Asunto(s)
Peróxido de Hidrógeno , Oxígeno Singlete , Luz , Oxidorreductasas , Complejo de Proteína del Fotosistema II/metabolismo , Especies Reactivas de Oxígeno , Superóxidos , Zeaxantinas/metabolismo , Zeaxantinas/farmacología
7.
Plant Physiol ; 186(1): 142-167, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33779763

RESUMEN

During photosynthesis, electrons travel from light-excited chlorophyll molecules along the electron transport chain to the final electron acceptor nicotinamide adenine dinucleotide phosphate (NADP) to form NADPH, which fuels the Calvin-Benson-Bassham cycle (CBBC). To allow photosynthetic reactions to occur flawlessly, a constant resupply of the acceptor NADP is mandatory. Several known stromal mechanisms aid in balancing the redox poise, but none of them utilizes the structurally highly similar coenzyme NAD(H). Using Arabidopsis (Arabidopsis thaliana) as a C3-model, we describe a pathway that employs the stromal enzyme PHOSPHOGLYCERATE DEHYDROGENASE 3 (PGDH3). We showed that PGDH3 exerts high NAD(H)-specificity and is active in photosynthesizing chloroplasts. PGDH3 withdrew its substrate 3-PGA directly from the CBBC. As a result, electrons become diverted from NADPH via the CBBC into the separate NADH redox pool. pgdh3 loss-of-function mutants revealed an overreduced NADP(H) redox pool but a more oxidized plastid NAD(H) pool compared to wild-type plants. As a result, photosystem I acceptor side limitation increased in pgdh3. Furthermore, pgdh3 plants displayed delayed CBBC activation, changes in nonphotochemical quenching, and altered proton motive force partitioning. Our fluctuating light-stress phenotyping data showed progressing photosystem II damage in pgdh3 mutants, emphasizing the significance of PGDH3 for plant performance under natural light environments. In summary, this study reveals an NAD(H)-specific mechanism in the stroma that aids in balancing the chloroplast redox poise. Consequently, the stromal NAD(H) pool may provide a promising target to manipulate plant photosynthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , NAD , Fosfoglicerato-Deshidrogenasa , Fotosíntesis , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , NAD/metabolismo , Fosfoglicerato-Deshidrogenasa/metabolismo
8.
Plant Physiol ; 182(3): 1222-1238, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31937683

RESUMEN

Biogenesis of plastid ribosomes is facilitated by auxiliary factors that process and modify ribosomal RNAs (rRNAs) or are involved in ribosome assembly. In comparison with their bacterial and mitochondrial counterparts, the biogenesis of plastid ribosomes is less well understood, and few auxiliary factors have been described so far. In this study, we report the functional characterization of CONSERVED ONLY IN THE GREEN LINEAGE20 (CGL20) in Arabidopsis (Arabidopsis thaliana; AtCGL20), which is a Pro-rich, ∼10-kD protein that is targeted to mitochondria and chloroplasts. In Arabidopsis, CGL20 is encoded by segmentally duplicated genes of high sequence similarity (AtCGL20A and AtCGL20B). Inactivation of these genes in the atcgl20ab mutant led to a visible virescent phenotype and growth arrest at low temperature. The chloroplast proteome, pigment composition, and photosynthetic performance were significantly affected in atcgl20ab mutants. Loss of AtCGL20 impaired plastid translation, perturbing the formation of a hidden break in the 23S rRNA and causing abnormal accumulation of 50S ribosomal subunits in the high-molecular-mass fraction of chloroplast stromal extracts. Moreover, AtCGL20A-eGFP fusion proteins comigrated with 50S ribosomal subunits in Suc density gradients, even after RNase treatment of stromal extracts. Therefore, we propose that AtCGL20 participates in the late stages of the biogenesis of 50S ribosomal subunits in plastids, a role that presumably evolved in the green lineage as a consequence of structural divergence of plastid ribosomes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ribosomas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribosomas/genética
9.
Plant Physiol ; 182(4): 2126-2142, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32041909

RESUMEN

The composition of the thylakoid proton motive force (pmf) is regulated by thylakoid ion transport. Passive ion channels in the thylakoid membrane dissipate the membrane potential (Δψ) component to allow for a higher fraction of pmf stored as a proton concentration gradient (ΔpH). K+/H+ antiport across the thylakoid membrane via K+ EXCHANGE ANTIPORTER3 (KEA3) instead reduces the ΔpH fraction of the pmf. Thereby, KEA3 decreases nonphotochemical quenching (NPQ), thus allowing for higher light use efficiency, which is particularly important during transitions from high to low light. Here, we show that in the background of the Arabidopsis (Arabidopsis thaliana) chloroplast (cp)ATP synthase assembly mutant cgl160, with decreased cpATP synthase activity and increased pmf amplitude, KEA3 plays an important role for photosynthesis and plant growth under steady-state conditions. By comparing cgl160 single with cgl160 kea3 double mutants, we demonstrate that in the cgl160 background loss of KEA3 causes a strong growth penalty. This is due to a reduced photosynthetic capacity of cgl160 kea3 mutants, as these plants have a lower lumenal pH than cgl160 mutants, and thus show substantially increased pH-dependent NPQ and decreased electron transport through the cytochrome b 6 f complex. Overexpression of KEA3 in the cgl160 background reduces pH-dependent NPQ and increases photosystem II efficiency. Taken together, our data provide evidence that under conditions where cpATP synthase activity is low, a KEA3-dependent reduction of ΔpH benefits photosynthesis and growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ATPasas de Translocación de Protón de Cloroplastos/genética , Concentración de Iones de Hidrógeno , Fotosíntesis/genética , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Antiportadores de Potasio-Hidrógeno/genética , Antiportadores de Potasio-Hidrógeno/metabolismo , Proteínas de las Membranas de los Tilacoides/genética , Proteínas de las Membranas de los Tilacoides/metabolismo , Tilacoides/metabolismo
10.
J Exp Bot ; 70(15): 3981-3993, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30976809

RESUMEN

Plastoglobules are lipoprotein particles that are found in different types of plastids. They contain a very specific and specialized set of lipids and proteins. Plastoglobules are highly dynamic in size and shape, and are therefore thought to participate in adaptation processes during either abiotic or biotic stresses or transitions between developmental stages. They are suggested to function in thylakoid biogenesis, isoprenoid metabolism, and chlorophyll degradation. While several plastoglobular proteins contain identifiable domains, others provide no structural clues to their function. In this study, we investigate the role of plastoglobular protein 18 (PG18), which is conserved from cyanobacteria to higher plants. Analysis of a PG18 loss-of-function mutant in Arabidopsis thaliana demonstrated that PG18 plays an important role in thylakoid formation; the loss of PG18 results in impaired accumulation, assembly, and function of thylakoid membrane complexes. Interestingly, the mutant accumulated less chlorophyll and carotenoids, whereas xanthophyll cycle pigments were increased. Accumulation of photosynthetic complexes is similarly affected in both a Synechocystis and an Arabidopsis PG18 mutant. However, the ultrastructure of cyanobacterial thylakoids is not compromised by the lack of PG18, probably due to its less complex architecture.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Tilacoides/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/genética , Electroforesis en Gel de Poliacrilamida , Regulación de la Expresión Génica de las Plantas , Immunoblotting , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Tilacoides/genética
11.
J Biol Chem ; 291(33): 17478-87, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27358399

RESUMEN

Non-photochemical quenching of excess excitation energy is an important photoprotective mechanism in photosynthetic organisms. In Arabidopsis thaliana, a high quenching capacity is constitutively present and depends on the PsbS protein. In the green alga Chlamydomonas reinhardtii, non-photochemical quenching becomes activated upon high light acclimation and requires the accumulation of light harvesting complex stress-related (LHCSR) proteins. Expression of the PsbS protein in C. reinhardtii has not been reported yet. Here, we show that PsbS is a light-induced protein in C. reinhardtii, whose accumulation under high light is further controlled by CO2 availability. PsbS accumulated after several hours of high light illumination at low CO2 At high CO2, however, PsbS was only transiently expressed under high light and was degraded after 1 h of high light exposure. PsbS accumulation correlated with an enhanced non-photochemical quenching capacity in high light-acclimated cells grown at low CO2 However, PsbS could not compensate for the function of LHCSR in an LHCSR-deficient mutant. Knockdown of PsbS accumulation led to reduction of both non-photochemical quenching capacity and LHCSR3 accumulation. Our data suggest that PsbS is essential for the activation of non-photochemical quenching in C. reinhardtii, possibly by promoting conformational changes required for activation of LHCSR3-dependent quenching in the antenna of photosystem II.


Asunto(s)
Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/enzimología , Luz , Complejo de Proteína del Fotosistema II/metabolismo , Chlamydomonas reinhardtii/genética , Técnicas de Silenciamiento del Gen , Complejo de Proteína del Fotosistema II/genética
12.
Biochim Biophys Acta ; 1857(12): 1860-1869, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27620066

RESUMEN

Plants are permanently exposed to rapidly changing environments, therefore it is evident that they had to evolve mechanisms enabling them to dynamically adapt to such fluctuations. Here we study how plants can be trained to enhance their photoprotection and elaborate on the concept of the short-term illumination memory in Arabidopsis thaliana. By monitoring fluorescence emission dynamics we systematically observe the extent of non-photochemical quenching (NPQ) after previous light exposure to recognise and quantify the memory effect. We propose a simplified mathematical model of photosynthesis that includes the key components required for NPQ activation, which allows us to quantify the contribution to photoprotection by those components. Due to its reduced complexity, our model can be easily applied to study similar behavioural changes in other species, which we demonstrate by adapting it to the shadow-tolerant plant Epipremnum aureum. Our results indicate that a basic mechanism of short-term light memory is preserved. The slow component, accumulation of zeaxanthin, accounts for the amount of memory remaining after relaxation in darkness, while the fast one, antenna protonation, increases quenching efficiency. With our combined theoretical and experimental approach we provide a unifying framework describing common principles of key photoprotective mechanisms across species in general, mathematical terms.


Asunto(s)
Arabidopsis/efectos de la radiación , Araceae/efectos de la radiación , Luz , Modelos Biológicos , Fotosíntesis/efectos de la radiación , Plantas/efectos de la radiación , Zeaxantinas/efectos de la radiación , Adaptación Fisiológica , Arabidopsis/metabolismo , Araceae/metabolismo , Cinética , Plantas/metabolismo , Especificidad de la Especie , Espectrometría de Fluorescencia , Zeaxantinas/metabolismo
13.
Plant J ; 87(6): 664-80, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27258321

RESUMEN

The group of homoiochlorophyllous resurrection plants evolved the unique capability to survive severe drought stress without dismantling the photosynthetic machinery. This implies that they developed efficient strategies to protect the leaves from reactive oxygen species (ROS) generated by photosynthetic side reactions. These strategies, however, are poorly understood. Here, we performed a detailed study of the photosynthetic machinery in the homoiochlorophyllous resurrection plant Craterostigma pumilum during dehydration and upon recovery from desiccation. During dehydration and rehydration, C. pumilum deactivates and activates partial components of the photosynthetic machinery in a specific order, allowing for coordinated shutdown and subsequent reinstatement of photosynthesis. Early responses to dehydration are the closure of stomata and activation of electron transfer to oxygen accompanied by inactivation of the cytochrome b6 f complex leading to attenuation of the photosynthetic linear electron flux (LEF). The decline in LEF is paralleled by a gradual increase in cyclic electron transport to maintain ATP production. At low water contents, inactivation and supramolecular reorganization of photosystem II becomes apparent, accompanied by functional detachment of light-harvesting complexes and interrupted access to plastoquinone. This well-ordered sequence of alterations in the photosynthetic thylakoid membranes helps prepare the plant for the desiccated state and minimize ROS production.


Asunto(s)
Craterostigma/fisiología , Fotosíntesis/fisiología , Dióxido de Carbono/metabolismo , Complejo de Citocromo b6f/metabolismo , Deshidratación , Transporte de Electrón , Complejo de Proteína del Fotosistema II/metabolismo , Estomas de Plantas/fisiología , Tilacoides/metabolismo
14.
New Phytol ; 214(3): 1132-1144, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28152190

RESUMEN

Phototrophic organisms need to ensure high photosynthetic performance whilst suppressing reactive oxygen species (ROS)-induced stress occurring under excess light conditions. The xanthophyll cycle (XC), related to the high-energy quenching component (qE) of the nonphotochemical quenching (NPQ) of excitation energy, is considered to be an obligatory component of photoprotective mechanisms. The pigment composition of at least one representative of each major clade of Ulvophyceae (Chlorophyta) was investigated. We searched for a light-dependent conversion of pigments and investigated the NPQ capacity with regard to the contribution of XC and the qE component when grown under different light conditions. A XC was found to be absent in a monophyletic group of Ulvophyceae, the Bryopsidales, when cultivated under low light, but was triggered in one of the 10 investigated bryopsidalean species, Caulerpa cf. taxifolia, when cultivated under high light. Although Bryopsidales accumulate zeaxanthin (Zea) under high-light (HL) conditions, NPQ formation is independent of a XC and not related to qE. qE- and XC-independent NPQ in the Bryopsidales contradicts the common perception regarding its ubiquitous occurrence in Chloroplastida. Zea accumulation in HL-acclimated Bryopsidales most probably represents a remnant of a functional XC. The existence of a monophyletic algal taxon that lacks qE highlights the need for broad biodiversity studies on photoprotective mechanisms.


Asunto(s)
Chlorophyta/fisiología , Procesos Fotoquímicos , Filogenia , Chlorophyta/crecimiento & desarrollo , Chlorophyta/efectos de la radiación , Oscuridad , Luz , Estrés Fisiológico/efectos de la radiación , Termodinámica , Xantófilas/metabolismo , Zeaxantinas
15.
Plant Physiol ; 172(1): 441-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27443603

RESUMEN

It is well established that thylakoid membranes of chloroplasts convert light energy into chemical energy, yet the development of chloroplast and thylakoid membranes is poorly understood. Loss of function of the two envelope K(+)/H(+) antiporters AtKEA1 and AtKEA2 was shown previously to have negative effects on the efficiency of photosynthesis and plant growth; however, the molecular basis remained unclear. Here, we tested whether the previously described phenotypes of double mutant kea1kea2 plants are due in part to defects during early chloroplast development in Arabidopsis (Arabidopsis thaliana). We show that impaired growth and pigmentation is particularly evident in young expanding leaves of kea1kea2 mutants. In proliferating leaf zones, chloroplasts contain much lower amounts of photosynthetic complexes and chlorophyll. Strikingly, AtKEA1 and AtKEA2 proteins accumulate to high amounts in small and dividing plastids, where they are specifically localized to the two caps of the organelle separated by the fission plane. The unusually long amino-terminal domain of 550 residues that precedes the antiport domain appears to tether the full-length AtKEA2 protein to the two caps. Finally, we show that the double mutant contains 30% fewer chloroplasts per cell. Together, these results show that AtKEA1 and AtKEA2 transporters in specific microdomains of the inner envelope link local osmotic, ionic, and pH homeostasis to plastid division and thylakoid membrane formation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plastidios/metabolismo , Antiportadores de Potasio-Hidrógeno/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Regulación de la Expresión Génica de las Plantas , Homeostasis , Concentración de Iones de Hidrógeno , Immunoblotting , Microscopía Confocal , Microscopía Electrónica de Transmisión , Mutación , Ósmosis , Fotosíntesis/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Plastidios/genética , Plastidios/ultraestructura , Antiportadores de Potasio-Hidrógeno/clasificación , Antiportadores de Potasio-Hidrógeno/genética , Tilacoides/química , Tilacoides/metabolismo
16.
J Biol Chem ; 290(22): 14091-106, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25897076

RESUMEN

The structural organization of proteins in biological membranes can affect their function. Photosynthetic thylakoid membranes in chloroplasts have the remarkable ability to change their supramolecular organization between disordered and semicrystalline states. Although the change to the semicrystalline state is known to be triggered by abiotic factors, the functional significance of this protein organization has not yet been understood. Taking advantage of an Arabidopsis thaliana fatty acid desaturase mutant (fad5) that constitutively forms semicrystalline arrays, we systematically test the functional implications of protein crystals in photosynthetic membranes. Here, we show that the change into an ordered state facilitates molecular diffusion of photosynthetic components in crowded thylakoid membranes. The increased mobility of small lipophilic molecules like plastoquinone and xanthophylls has implications for diffusion-dependent electron transport and photoprotective energy-dependent quenching. The mobility of the large photosystem II supercomplexes, however, is impaired, leading to retarded repair of damaged proteins. Our results demonstrate that supramolecular changes into more ordered states have differing impacts on photosynthesis that favor either diffusion-dependent electron transport and photoprotection or protein repair processes, thus fine-tuning the photosynthetic energy conversion.


Asunto(s)
Arabidopsis/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/metabolismo , Cristalización , Transporte de Electrón , Electrones , Recuperación de Fluorescencia tras Fotoblanqueo , Microscopía Electrónica , Mutación , Oxígeno/metabolismo , Fotosíntesis , Espectrometría de Fluorescencia , Espectrofotometría
17.
Plant Cell Physiol ; 56(2): 346-57, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25416291

RESUMEN

The enzyme zeaxanthin epoxidase (ZEP) catalyzes the conversion of zeaxanthin to violaxanthin, a key reaction for ABA biosynthesis and the xanthophyll cycle. Both processes are important for acclimation to environmental stress conditions, in particular drought (ABA biosynthesis) and light (xanthophyll cycle) stress. Hence, both ZEP functions may require differential regulation to optimize plant fitness. The key to understanding the function of ZEP in both stress responses might lie in its spatial and temporal distribution in plant tissues. Therefore, we analyzed the distribution of ZEP in plant tissues and plastids under drought and light stress by use of a ZEP-specific antibody. In addition, we determined the pigment composition of the plant tissues and chloroplast membrane subcompartments in response to these stresses. The ZEP protein was detected in all plant tissues (except flowers) concomitant with xanthophylls. The highest levels of ZEP were present in leaf chloroplasts and root plastids. Within chloroplasts, ZEP was localized predominantly in the thylakoid membrane and stroma, while only a small fraction was bound by the envelope membrane. Light stress affected neither the accumulation nor the relative distribution of ZEP in chloroplasts, while drought stress led to an increase of ZEP in roots and to a degradation of ZEP in leaves. However, drought stress-induced increases in ABA were similar in both tissues. These data support a tissue- and stress-specific accumulation of the ZEP protein in accordance with its different functions in ABA biosynthesis and the xanthophyll cycle.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Especificidad de Órganos , Oxidorreductasas/metabolismo , Plastidios/enzimología , Ácido Abscísico/metabolismo , Sequías , Membranas Intracelulares/enzimología , Pigmentos Biológicos/metabolismo , Hojas de la Planta/enzimología , Raíces de Plantas/enzimología , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Estrés Fisiológico , Tilacoides
18.
Proc Biol Sci ; 282(1802)2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25652835

RESUMEN

The only animal cells known that can maintain functional plastids (kleptoplasts) in their cytosol occur in the digestive gland epithelia of sacoglossan slugs. Only a few species of the many hundred known can profit from kleptoplasty during starvation long-term, but why is not understood. The two sister taxa Elysia cornigera and Elysia timida sequester plastids from the same algal species, but with a very different outcome: while E. cornigera usually dies within the first two weeks when deprived of food, E. timida can survive for many months to come. Here we compare the responses of the two slugs to starvation, blocked photosynthesis and light stress. The two species respond differently, but in both starvation is the main denominator that alters global gene expression profiles. The kleptoplasts' ability to fix CO2 decreases at a similar rate in both slugs during starvation, but only E. cornigera individuals die in the presence of functional kleptoplasts, concomitant with the accumulation of reactive oxygen species (ROS) in the digestive tract. We show that profiting from the acquisition of robust plastids, and key to E. timida's longer survival, is determined by an increased starvation tolerance that keeps ROS levels at bay.


Asunto(s)
Gastrópodos/fisiología , Plastidios/metabolismo , Animales , Metabolismo Energético , Gastrópodos/metabolismo , Gastrópodos/efectos de la radiación , Luz , Fotosíntesis , Plastidios/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Especificidad de la Especie , Inanición , Transcriptoma
19.
Plant Physiol ; 165(1): 207-26, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24664203

RESUMEN

The chloroplast F1Fo-ATP synthase/ATPase (cpATPase) couples ATP synthesis to the light-driven electrochemical proton gradient. The cpATPase is a multiprotein complex and consists of a membrane-spanning protein channel (comprising subunit types a, b, b', and c) and a peripheral domain (subunits α, ß, γ, δ, and ε). We report the characterization of the Arabidopsis (Arabidopsis thaliana) CONSERVED ONLY IN THE GREEN LINEAGE160 (AtCGL160) protein (AtCGL160), conserved in green algae and plants. AtCGL160 is an integral thylakoid protein, and its carboxyl-terminal portion is distantly related to prokaryotic ATP SYNTHASE PROTEIN1 (Atp1/UncI) proteins that are thought to function in ATP synthase assembly. Plants without AtCGL160 display an increase in xanthophyll cycle activity and energy-dependent nonphotochemical quenching. These photosynthetic perturbations can be attributed to a severe reduction in cpATPase levels that result in increased acidification of the thylakoid lumen. AtCGL160 is not an integral cpATPase component but is specifically required for the efficient incorporation of the c-subunit into the cpATPase. AtCGL160, as well as a chimeric protein containing the amino-terminal part of AtCGL160 and Synechocystis sp. PCC6803 Atp1, physically interact with the c-subunit. We conclude that AtCGL160 and Atp1 facilitate the assembly of the membranous part of the cpATPase in their hosts, but loss of their functions provokes a unique compensatory response in each organism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Membranas Intracelulares/enzimología , Proteínas de las Membranas de los Tilacoides/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Clorofila/metabolismo , Clorofila A , ADN Bacteriano/genética , Transporte de Electrón , Fluorescencia , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Termodinámica , Proteínas de las Membranas de los Tilacoides/química , Tilacoides/metabolismo , Transcripción Genética
20.
Biochim Biophys Acta ; 1827(6): 786-92, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23458431

RESUMEN

Non-photochemical quenching (NPQ) protects photosynthetic organisms against photodamage by high light. One of the key measuring parameters for characterizing NPQ is the high-light induced decrease in chlorophyll fluorescence. The originally measured data are maximal fluorescence (Fm') signals as a function of actinic illumination time (Fm'(t)). Usually these original data are converted into the so-called Stern-Volmer quenching function, NPQSV(t), which is then analyzed and interpreted in terms of various NPQ mechanisms and kinetics. However, the interpretation of this analysis essentially depends on the assumption that NPQ follows indeed a Stern-Volmer relationship. Here, we question this commonly assumed relationship, which surprisingly has never been proven. We demonstrate by simulation of quenching data that particularly the conversion of time-dependent quenching curves like Fm'(t) into NPQSV(t) is (mathematically) not "innocent" in terms of its effects. It distorts the kinetic quenching information contained in the originally measured function Fm'(t), leading to a severe (often sigmoidal) distortion of the time-dependence of quenching and has negative impact on the ability to uncover the underlying quenching mechanisms and their contribution to the quenching kinetics. We conclude that the commonly applied analysis of time-dependent NPQ in NPQSV(t) space should be reconsidered. First, there exists no sound theoretical basis for this common practice. Second, there occurs no loss of information whatsoever when analyzing and interpreting the originally measured Fm'(t) data directly. Consequently, the analysis of Fm'(t) data has a much higher potential to provide correct mechanistic answers when trying to correlate quenching data with other biochemical information related to quenching.


Asunto(s)
Clorofila/química , Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA