Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Prenat Diagn ; 39(11): 1011-1015, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31429096

RESUMEN

OBJECTIVE: To evaluate clinical performance of a new automated cell-free (cf)DNA assay in maternal plasma screening for trisomies 21, 18, and 13, and to determine fetal sex. METHOD: Maternal plasma samples from 1200 singleton pregnancies were analyzed with a new non-sequencing cfDNA method, which is based on imaging and counting specific chromosome targets. Reference outcomes were determined by either cytogenetic testing, of amniotic fluid or chorionic villi, or clinical examination of neonates. RESULTS: The samples examined included 158 fetal aneuploidies. Sensitivity was 100% (112/112) for trisomy 21, 89% (32/36) for trisomy 18, and 100% (10/10) for trisomy 13. The respective specificities were 100%, 99.5%, and 99.9%. There were five first pass failures (0.4%), all in unaffected pregnancies. Sex classification was performed on 979 of the samples and 99.6% (975/979) provided a concordant result. CONCLUSION: The new automated cfDNA assay has high sensitivity and specificity for trisomies 21, 18, and 13 and accurate classification of fetal sex, while maintaining a low failure rate. The study demonstrated that cfDNA testing can be simplified and automated to reduce cost and thereby enabling wider population-based screening.


Asunto(s)
Pruebas Prenatales no Invasivas/métodos , Trisomía/diagnóstico , Cromosomas Humanos Par 13 , Cromosomas Humanos Par 18 , Cromosomas Humanos Par 21 , Femenino , Humanos , Embarazo
2.
Chembiochem ; 17(18): 1693-7, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27383542

RESUMEN

Engineered enzyme variants of potato epoxide hydrolase (StEH1) display varying degrees of enrichment of (2R)-3-phenylpropane-1,2-diol from racemic benzyloxirane. Curiously, the observed increase in the enantiomeric excess of the (R)-diol is not only a consequence of changes in enantioselectivity for the preferred epoxide enantiomer, but also to changes in the regioselectivity of the epoxide ring opening of (S)-benzyloxirane. In order to probe the structural origin of these differences in substrate selectivity and catalytic regiopreference, we solved the crystal structures for the evolved StEH1 variants. We used these structures as a starting point for molecular docking studies of the epoxide enantiomers into the respective active sites. Interestingly, despite the simplicity of our docking analysis, the apparent preferred binding modes appear to rationalize the experimentally determined regioselectivities. The analysis also identifies an active site residue (F33) as a potentially important interaction partner, a role that could explain the high conservation of this residue during evolution. Overall, our experimental, structural, and computational studies provide snapshots into the evolution of enantioconvergence in StEH1-catalyzed epoxide hydrolysis.


Asunto(s)
Biocatálisis , Evolución Molecular Dirigida , Epóxido Hidrolasas/metabolismo , Compuestos Epoxi/metabolismo , Solanum tuberosum/enzimología , Compuestos Epoxi/química , Hidrólisis , Simulación del Acoplamiento Molecular , Estructura Molecular
4.
IUCrJ ; 5(Pt 3): 269-282, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29755743

RESUMEN

The epoxide hydrolase StEH1 catalyzes the hydrolysis of trans-methylstyrene oxide to 1-phenyl-propane-1,2-diol. The (S,S)-epoxide is exclusively transformed into the (1R,2S)-diol, while hydrolysis of the (R,R)-epoxide results in a mixture of product enantiomers. In order to understand the differences in the stereoconfigurations of the products, the reactions were studied kinetically during both the pre-steady-state and steady-state phases. A number of closely related StEH1 variants were analyzed in parallel, and the results were rationalized by structure-activity analysis using the available crystal structures of all tested enzyme variants. Finally, empirical valence-bond simulations were performed in order to provide additional insight into the observed kinetic behaviour and ratios of the diol product enantiomers. These combined data allow us to present a model for the flux through the catalyzed reactions. With the (R,R)-epoxide, ring opening may occur at either C atom and with similar energy barriers for hydrolysis, resulting in a mixture of diol enantiomer products. However, with the (S,S)-epoxide, although either epoxide C atom may react to form the covalent enzyme intermediate, only the pro-(R,S) alkylenzyme is amenable to subsequent hydrolysis. Previously contradictory observations from kinetics experiments as well as product ratios can therefore now be explained for this biocatalytically relevant enzyme.

5.
Sci Rep ; 8(1): 4549, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540801

RESUMEN

Cell-free DNA analysis is becoming adopted for first line aneuploidy screening, however for most healthcare programs, cost and workflow complexity is limiting adoption of the test. We report a novel cost effective method, the Vanadis NIPT assay, designed for high precision digitally-enabled measurement of chromosomal aneuploidies in maternal plasma. Reducing NIPT assay complexity is achieved by using novel molecular probe technology that specifically label target chromosomes combined with a new readout format using a nanofilter to enrich single molecules for imaging and counting without DNA amplification, microarrays or sequencing. The primary objective of this study was to assess the Vanadis NIPT assay with respect to analytical precision and clinical feasibility. Analysis of reference DNA samples indicate that samples which are challenging to analyze with low fetal-fraction can be readily detected with a limit of detection determined at <2% fetal-fraction. In total of 286 clinical samples were analysed and 30 out of 30 pregnancies affected by trisomy 21 were classified correctly. This method has the potential to make cost effective NIPT more widely available with more women benefiting from superior detection and false positive rates.


Asunto(s)
Ácidos Nucleicos Libres de Células/sangre , Síndrome de Down/diagnóstico , Diagnóstico Prenatal/métodos , Imagen Individual de Molécula/métodos , Aneuploidia , Estudios de Casos y Controles , Análisis Costo-Beneficio , Femenino , Humanos , Embarazo , Diagnóstico Prenatal/economía , Estudios Prospectivos , Imagen Individual de Molécula/economía
6.
ACS Catal ; 5(10): 5702-5713, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26527505

RESUMEN

Potato epoxide hydrolase 1 exhibits rich enantio- and regioselectivity in the hydrolysis of a broad range of substrates. The enzyme can be engineered to increase the yield of optically pure products as a result of changes in both enantio- and regioselectivity. It is thus highly attractive in biocatalysis, particularly for the generation of enantiopure fine chemicals and pharmaceuticals. The present work aims to establish the principles underlying the activity and selectivity of the enzyme through a combined computational, structural, and kinetic study using the substrate trans-stilbene oxide as a model system. Extensive empirical valence bond simulations have been performed on the wild-type enzyme together with several experimentally characterized mutants. We are able to computationally reproduce the differences between the activities of different stereoisomers of the substrate and the effects of mutations of several active-site residues. In addition, our results indicate the involvement of a previously neglected residue, H104, which is electrostatically linked to the general base H300. We find that this residue, which is highly conserved in epoxide hydrolases and related hydrolytic enzymes, needs to be in its protonated form in order to provide charge balance in an otherwise negatively charged active site. Our data show that unless the active-site charge balance is correctly treated in simulations, it is not possible to generate a physically meaningful model for the enzyme that can accurately reproduce activity and selectivity trends. We also expand our understanding of other catalytic residues, demonstrating in particular the role of a noncanonical residue, E35, as a "backup base" in the absence of H300. Our results provide a detailed view of the main factors driving catalysis and regioselectivity in this enzyme and identify targets for subsequent enzyme design efforts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA