Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Analyst ; 149(4): 1190-1201, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38213181

RESUMEN

The advancement of point-of-care diagnostics is crucial to improving patient outcomes, especially in areas with low access to hospitals or specialized laboratories. In particular, rapid, sensitive, and multiplexed detection of disease biomarkers has great potential to achieve accurate diagnosis and inform high quality care for patients. Our Coulter counting and immunocapture based detection system has previously shown its broad applicability in the detection of cells, proteins, and nucleic acids. This paper expands the capability of the platform by demonstrating multiplexed detection of whole-virus particles using electrically distinguishable hydrogel beads by demonstrating the capability of our platform to achieve simultaneous detection at clinically relevant concentrations of hepatitis A virus (>2 × 103 IU mL-1) and human parvovirus B19 virus like particles (>106 IU mL-1) from plasma samples. The expanded versatility of the differential electrical counting platform allows for more robust and diverse testing capabilities.


Asunto(s)
Ácidos Nucleicos , Parvovirus B19 Humano , Humanos , Microfluídica , Proteínas
2.
Analyst ; 147(17): 3838-3853, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35726910

RESUMEN

Rapid, simple, inexpensive, accurate, and sensitive point-of-care (POC) detection of viral pathogens in bodily fluids is a vital component of controlling the spread of infectious diseases. The predominant laboratory-based methods for sample processing and nucleic acid detection face limitations that prevent them from gaining wide adoption for POC applications in low-resource settings and self-testing scenarios. Here, we report the design and characterization of an integrated system for rapid sample-to-answer detection of a viral pathogen in a droplet of whole blood comprised of a 2-stage microfluidic cartridge for sample processing and nucleic acid amplification, and a clip-on detection instrument that interfaces with the image sensor of a smartphone. The cartridge is designed to release viral RNA from Zika virus in whole blood using chemical lysis, followed by mixing with the assay buffer for performing reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP) reactions in six parallel microfluidic compartments. The battery-powered handheld detection instrument uniformly heats the compartments from below, and an array of LEDs illuminates from above, while the generation of fluorescent reporters in the compartments is kinetically monitored by collecting a series of smartphone images. We characterize the assay time and detection limits for detecting Zika RNA and gamma ray-deactivated Zika virus spiked into buffer and whole blood and compare the performance of the same assay when conducted in conventional PCR tubes. Our approach for kinetic monitoring of the fluorescence-generating process in the microfluidic compartments enables spatial analysis of early fluorescent "bloom" events for positive samples, in an approach called "Spatial LAMP" (S-LAMP). We show that S-LAMP image analysis reduces the time required to designate an assay as a positive test, compared to conventional analysis of the average fluorescent intensity of the entire compartment. S-LAMP enables the RT-LAMP process to be as short as 22 minutes, resulting in a total sample-to-answer time in the range of 17-32 minutes to distinguish positive from negative samples, while demonstrating a viral RNA detection as low as 2.70 × 102 copies per µl, and a gamma-irradiated virus of 103 virus particles in a single 12.5 µl droplet blood sample.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Microfluídica , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/genética , Sensibilidad y Especificidad , Teléfono Inteligente , Instrumentos Quirúrgicos , Virus Zika/genética , Infección por el Virus Zika/diagnóstico
3.
Biomed Microdevices ; 22(2): 36, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32419087

RESUMEN

Sepsis, a life-threatening organ dysfunction caused by a dysregulated host response, leads the U.S in both mortality rate and cost of treatment. Sepsis treatment protocols currently rely on broad and non-specific parameters like heart and respiration rate, and temperature; however, studies show that biomarkers Interlukin-6 (IL-6) and Procalcitonin (PCT) correlate to sepsis progression and response to treatment. Prior work also suggests that using multi-parameter predictive analytics with biomarkers and clinical information can inform treatment to improve outcome. A point-of-care (POC) platform that provides information for multiple biomarkers can aid in the diagnosis and prognosis of potentially septic patients. Using impedance cytometry, microbead immunoassays, and biotin-streptavidin binding, we report a microfluidic POC system that correlates microbead capture to IL-6 and PCT concentrations. A multiplexed microbead immunoassay is developed and validated for simultaneous detection of both IL-6 and PCT from human plasma samples. Using the POC platform, we quantified plasma samples containing healthy, medium (~103pg/ml) and high (~105pg/ml) IL-6 and PCT concentrations with various levels of significance (P < 0.05-P < 0.00001) and validated the concept of this device as a POC platform for sepsis biomarkers.


Asunto(s)
Análisis Químico de la Sangre/instrumentación , Interleucina-6/sangre , Dispositivos Laboratorio en un Chip , Pruebas en el Punto de Atención , Polipéptido alfa Relacionado con Calcitonina/sangre , Biomarcadores/sangre , Estudios de Casos y Controles , Impedancia Eléctrica , Humanos , Sepsis/sangre , Sepsis/diagnóstico , Factores de Tiempo
4.
ACS Appl Mater Interfaces ; 15(17): 20613-20624, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-36973233

RESUMEN

Zinc germanate doped with Mn2+ (Zn2GeO4:Mn2+) is known to be a persistent luminescence green phosphor with potential applications in biosensing and bioimaging. Such applications demand nanoparticulated phosphors with a uniform shape and size, good dispersibility in aqueous media, high chemical stability, and surface-functionalization. These characteristics could be major bottlenecks and hence limit their practical applications. This work describes a one-pot, microwave-assisted hydrothermal method to synthesize highly uniform Zn2GeO4:Mn2+ nanoparticles (NPs) using polyacrylic acid (PAA) as an additive. A thorough characterization of the NPs showed that the PAA molecules were essential to realizing uniform NPs as they were responsible for the ordered aggregation of their building blocks. In addition, PAA remained attached to the NPs surface, which conferred high colloidal stability to the NPs through electrostatic and steric interactions, and provided carboxylate groups that can act as anchor sites for the eventual conjugation of biomolecules to the surface. In addition, it was demonstrated that the as-synthesized NPs were chemically stable for, at least, 1 week in phosphate buffer saline (pH range = 6.0-7.4). The luminescence properties of Zn2GeO4 NPs doped with different contents of Mn2+ (0.25-3.00 mol %) were evaluated to find the optimum doping level for the highest photoluminescence (2.50% Mn) and the longest persistent luminescence (0.50% Mn). The NPs with the best persistent luminescence properties were photostable for at least 1 week. Finally, taking advantage of such properties and the presence of surface carboxylate groups, the Zn2GeO4:0.50%Mn2+ sample was successfully used to develop a persistent luminescence-based sandwich immunoassay for the autofluorescence-free detection of interleukin-6 in undiluted human serum and undiluted human plasma samples. This study demonstrates that our persistent Mn-doped Zn2GeO4 nanophosphors are ideal candidates for biosensing applications.


Asunto(s)
Luminiscencia , Nanopartículas , Humanos , Nanopartículas/química , Resinas Acrílicas , Zinc/química
5.
Artículo en Inglés | MEDLINE | ID: mdl-37483649

RESUMEN

Sepsis is a life-threatening dysfunction of organ systems caused by a dysregulated immune system because of an infectious process. It remains one of the leading causes of hospital mortality and of hospital readmissions in the United States. Mortality from sepsis increases with each hour of delayed treatment, therefore, diagnostic devices that can reduce the time from the onset of a patient's infection to the delivery of appropriate therapy are urgently needed. Likewise, tools that are capable of high-frequency testing of clinically relevant biomarkers are required to study disease progression. Electrochemical biosensors offer important advantages such as high sensitivity, fast response, miniaturization, and low cost that can be adapted to clinical needs. In this review paper, we discuss the current state, limitations, and future directions of electrochemical-based point-of-care detection platforms that contribute to the diagnosis and monitoring of sepsis.

6.
ACS Nano ; 15(5): 7899-7906, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33984237

RESUMEN

Point-of-care (POC) detection technologies that enable decentralized, rapid, sensitive, low-cost diagnostics of COVID-19 infection are urgently needed around the world. With many technologies approved for commercialization in the past 10 months, the field of COVID-19 POC diagnostics is rapidly evolving. In this Perspective, we analyze the current state of POC technologies for the diagnosis and monitoring of COVID-19 infection and discuss future challenges in COVID-19 diagnostics. As the COVID-19 pandemic becomes endemic, the advances gained during this past year will likely also be utilized for future prediction of emerging outbreaks and pandemics.


Asunto(s)
COVID-19 , Pandemias , Humanos , Sistemas de Atención de Punto , Pruebas en el Punto de Atención , SARS-CoV-2
7.
Lab Chip ; 20(13): 2274-2283, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32490455

RESUMEN

Rapid, low-cost, and multiplexed biomolecule detection is an important goal in the development of effective molecular diagnostics. Our recent work has demonstrated a microfluidic biochip device that can electrically quantitate a protein target with high sensitivity. This platform detects and quantifies a target analyte by counting and capturing micron-sized beads in response to an immunoassay on the bead surface. Existing microparticles limit the technique to the detection of a single protein target and lack the magnetic properties required for separation of the microparticles for direct measurements from whole blood. Here, we report new precisely engineered microparticles that achieve electrical multiplexing and adapt this platform for low-cost and label-free multiplexed electrical detection of biomolecules. Droplet microfluidic synthesis yielded highly-monodisperse populations of magnetic hydrogel beads (MHBs) with the necessary properties for multiplexing the electrical Coulter counting on chip. Each bead population was designed to contain a different amount of the hydrogel material, resulting in a unique electrical impedance signature during Coulter counting, thereby enabling unique identification of each bead. These monodisperse bead populations span a narrow range of sizes ensuring that all can be captured sensitively and selectively under simultaneously flow. Incorporating these newly synthesized beads, we demonstrate versatile and multiplexed biomolecule detection of proteins or DNA targets. This development of multiplexed beads for the electrical detection of biomolecules, provides a critical advancement towards multiplexing the Coulter counting approach and the development of a low cost point-of-care diagnostic sensor.


Asunto(s)
Hidrogeles , Dispositivos Laboratorio en un Chip , Inmunoensayo , Separación Inmunomagnética , Microfluídica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA