RESUMEN
ADP-ribose (ADPr) readers are essential components of ADP-ribosylation signaling, which regulates genome maintenance and immunity. The identification and discrimination between monoADPr (MAR) and polyADPr (PAR) readers is difficult because of a lack of suitable affinity-enrichment reagents. We synthesized well-defined ADPr probes and used these for affinity purifications combined with relative and absolute quantitative mass spectrometry to generate proteome-wide MAR and PAR interactomes, including determination of apparent binding affinities. Among the main findings, MAR and PAR readers regulate various common and distinct processes, such as the DNA-damage response, cellular metabolism, RNA trafficking, and transcription. We monitored the dynamics of PAR interactions upon induction of oxidative DNA damage and uncovered the mechanistic connections between ubiquitin signaling and ADP-ribosylation. Taken together, chemical biology enables exploration of MAR and PAR readers using interaction proteomics. Furthermore, the generated MAR and PAR interaction maps significantly expand our current understanding of ADPr signaling.
Asunto(s)
ADP-Ribosilación , Adenosina Difosfato Ribosa/química , Adenosina Difosfato/química , Proteómica/métodos , Ubiquitina-Proteína Ligasas/química , Sitio Alostérico , Animales , Anticuerpos Monoclonales/química , Sitios de Unión , Biotinilación , Comunicación Celular , Daño del ADN , Técnicas Genéticas , Células HeLa , Humanos , Espectrometría de Masas , Ratones , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteoma , Transducción de Señal , UbiquitinaRESUMEN
Tet proteins oxidize 5-methylcytosine (mC) to generate 5-hydroxymethyl (hmC), 5-formyl (fC), and 5-carboxylcytosine (caC). The exact function of these oxidative cytosine bases remains elusive. We applied quantitative mass-spectrometry-based proteomics to identify readers for mC and hmC in mouse embryonic stem cells (mESC), neuronal progenitor cells (NPC), and adult mouse brain tissue. Readers for these modifications are only partially overlapping, and some readers, such as Rfx proteins, display strong specificity. Interactions are dynamic during differentiation, as for example evidenced by the mESC-specific binding of Klf4 to mC and the NPC-specific binding of Uhrf2 to hmC, suggesting specific biological roles for mC and hmC. Oxidized derivatives of mC recruit distinct transcription regulators as well as a large number of DNA repair proteins in mouse ES cells, implicating the DNA damage response as a major player in active DNA demethylation.
Asunto(s)
5-Metilcitosina/análisis , Citosina/análogos & derivados , Metilación de ADN , 5-Metilcitosina/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Citosina/análisis , Citosina/metabolismo , ADN Glicosilasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/metabolismo , Factor 4 Similar a Kruppel , Espectrometría de Masas , Ratones , Oxidación-Reducción , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción del Factor Regulador X , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832 We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m6A in rRNA in stemness, differentiation, development, and diseases.
Asunto(s)
Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/enzimología , Mutación , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Biosíntesis de Proteínas/genética , ARN Ribosómico 18S/metabolismoRESUMEN
Intracellular signaling via the covalent attachment of different ubiquitin linkages to protein substrates is fundamental to many cellular processes. Although linkage-selective ubiquitin interactors have been studied on a case-by-case basis, proteome-wide analyses have not been conducted yet. Here, we present ubiquitin interactor affinity enrichment-mass spectrometry (UbIA-MS), a quantitative interaction proteomics method that makes use of chemically synthesized diubiquitin to enrich and identify ubiquitin linkage interactors from crude cell lysates. UbIA-MS reveals linkage-selective diubiquitin interactions in multiple cell types. For example, we identify TAB2 and TAB3 as novel K6 diubiquitin interactors and characterize UCHL3 as a K27-linkage selective interactor that regulates K27 polyubiquitin chain formation in cells. Additionally, we show a class of monoubiquitin and K6 diubiquitin interactors whose binding is induced by DNA damage. We expect that our proteome-wide diubiquitin interaction landscape and established workflows will have broad applications in the ongoing efforts to decipher the complex language of ubiquitin signaling.
Asunto(s)
Espectrometría de Masas , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteómica/métodos , Transducción de Señal , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación , Animales , Sitios de Unión , Biología Computacional , Cisteína Endopeptidasas/metabolismo , Bases de Datos de Proteínas , Células Madre Embrionarias/metabolismo , Femenino , Células HEK293 , Células HeLa , Humanos , Ratones , Células-Madre Neurales/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Ubiquitina Tiolesterasa , Neoplasias del Cuello Uterino/metabolismo , Flujo de TrabajoRESUMEN
Thermal proteome profiling (TPP) has significantly advanced the field of drug discovery by facilitating proteome-wide identification of drug targets and off-targets. However, TPP has not been widely applied for high-throughput drug screenings, since the method is labor intensive and requires a lot of measurement time on a mass spectrometer. Here, we present Single-tube TPP with Uniform Progression (STPP-UP), which significantly reduces both the amount of required input material and measurement time, while retaining the ability to identify drug targets for compounds of interest. By using incremental heating of a single sample, changes in protein thermal stability across a range of temperatures can be assessed, while alleviating the need to measure multiple samples heated to different temperatures. We demonstrate that STPP-UP is able to identify the direct interactors for anticancer drugs in both human and mice cells. In summary, the STPP-UP methodology represents a useful tool to advance drug discovery and drug repurposing efforts.
Asunto(s)
Antineoplásicos , Proteoma , Ratones , Humanos , Animales , Proteoma/metabolismo , Sistemas de Liberación de Medicamentos , Temperatura , Ensayos Analíticos de Alto Rendimiento , Estabilidad ProteicaRESUMEN
In recent years, quantitative mass spectrometry-based interaction proteomics technology has proven very useful in identifying specific DNA-protein interactions using single pull-downs from crude lysates. Here, we applied a SILAC/TMT-based higher-order multiplexing approach to develop an interaction proteomics workflow called Protein-nucleic acid Affinity and Specificity quantification by MAss spectrometry in Nuclear extracts or PASMAN. In PASMAN, DNA pull-downs using a concentration range of specific and control DNA baits are performed in SILAC-labeled nuclear extracts. MS1-based quantification to determine specific DNA-protein interactions is then combined with sequential TMT-based quantification of fragmented SILAC peptides, allowing the generation of Hill-like curves and determination of apparent binding affinities. We benchmarked PASMAN using the SP/KLF motif and further applied it to gain insights into two CGCG-containing consensus DNA motifs. These motifs are recognized by two BEN domain-containing proteins, BANP and BEND3, which we find to interact with these motifs with distinct affinities. Finally, we profiled the BEND3 proximal proteome, revealing the NuRD complex as the major BEND3 proximal protein complex in vivo. In summary, PASMAN represents, to our knowledge, the first higher-order multiplexing-based interaction proteomics method that can be used to decipher specific DNA-protein interactions and their apparent affinities in various biological and pathological contexts.
Asunto(s)
Péptidos , Proteoma , Unión Proteica , Proteoma/análisis , Espectrometría de Masas/métodos , Péptidos/metabolismo , ADN/metabolismo , Marcaje Isotópico/métodosRESUMEN
Polycomb group (PcG) proteins are transcriptional repressors that are important regulators of cell fate during embryonic development. Among them, Ezh2 is responsible for catalyzing the epigenetic repressive mark H3K27me3 and is essential for animal development. The ability of zebrafish embryos lacking both maternal and zygotic ezh2 to form a normal body plan provides a unique model for comprehensively studying Ezh2 function during early development in vertebrates. By using a multi-omics approach, we found that Ezh2 is required for the deposition of H3K27me3 and is essential for proper recruitment of Polycomb group protein Rnf2. However, despite the complete absence of PcG-associated epigenetic mark and proteins, only minor changes in H3K4me3 deposition and gene and protein expression occur. These changes were mainly due to local dysregulation of transcription factors outside their normal expression boundaries. Altogether, our results in zebrafish show that Polycomb-mediated gene repression is important immediately after the body plan is formed to maintain spatially restricted expression profiles of transcription factors, and we highlight the differences that exist in the timing of PcG protein action between vertebrate species.
Asunto(s)
Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas del Grupo Polycomb/metabolismo , Proteínas Represoras/metabolismo , Vertebrados/embriología , Vertebrados/genética , Animales , Embrión no Mamífero/metabolismo , Epigénesis Genética , Histonas/metabolismo , Lisina/metabolismo , Metilación , Mutación/genética , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma/genética , Pez Cebra/embriología , Pez Cebra/genética , Cigoto/metabolismoRESUMEN
Hepatocyte nuclear factor 1ß (HNF1ß) is an essential transcription factor in development of the kidney, liver, and pancreas. HNF1ß-mediated transcription of target genes is dependent on the cell type and the development stage. Nevertheless, the regulation of HNF1ß function by enhancers and co-factors that allow this cell-specific transcription is largely unknown. To map the HNF1ß interactome we performed mass spectrometry in a mouse kidney inner medullary collecting duct cell line. Pterin-4a-carbinolamine dehydratase 2 (PCBD2) was identified as a novel interaction partner of HNF1ß. PCBD2 and its close homolog PCBD1 shuttle between the cytoplasm and nucleus to exert their enzymatic and transcriptional activities. Although both PCBD proteins share high sequence identity (48% and 88% in HNF1 recognition helix), their tissue expression patterns are unique. PCBD1 is most abundant in kidney and liver while PCBD2 is also abundant in lung, spleen, and adipose tissue. Using immunolocalization studies and biochemical analysis we show that in presence of HNF1ß the nuclear localization of PCBD1 and PCBD2 increases significantly. Promoter luciferase assays demonstrate that co-factors PCBD1 and PCBD2 differentially regulate the ability of HNF1ß to activate the promoters of transcriptional targets important in renal electrolyte homeostasis. Deleting the N-terminal sequence of PCBD2, not found in PCBD1, diminished the differential effects of the co-factors on HNF1ß activity. All together these results indicate that PCBD1 and PCBD2 can exert different effects on HNF1ß-mediated transcription. Future studies should confirm whether these unique co-factor activities also apply to HNF1ß-target genes involved in additional processes besides ion transport in the kidney.
Asunto(s)
Factor Nuclear 1-beta del Hepatocito/metabolismo , Hidroliasas/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica , Células HEK293 , Factor Nuclear 1-beta del Hepatocito/genética , Humanos , Hidroliasas/genética , Espectrometría de Masas , Ratones , Modelos Moleculares , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Regiones Promotoras Genéticas , Conformación Proteica , Transporte de Proteínas , Transcripción GenéticaRESUMEN
Genetic mutations affecting chromatin modifiers are widespread in cancers. In malignant peripheral nerve sheath tumors (MPNSTs), Polycomb repressive complex 2 (PRC2), which plays a crucial role in gene silencing, is inactivated through recurrent mutations in core subunits embryonic ectoderm development (EED) and suppressor of zeste 12 homolog (SUZ12), but mutations in PRC2's main catalytic subunit enhancer of zeste homolog 2 (EZH2) have never been found. This is in contrast to myeloid and lymphoid malignancies, which harbor frequent loss-of-function mutations in EZH2. Here, we investigated whether the absence of EZH2 mutations in MPNST is due to a PRC2-independent (i.e., noncanonical) function of the enzyme or to redundancy with EZH1. We show that, in the absence of SUZ12, EZH2 remains bound to EED but loses its interaction with all other core and accessory PRC2 subunits. Through genetic and pharmacological analyses, we unambiguously establish that EZH2 is functionally inert in this context, thereby excluding a PRC2-independent function. Instead, we show that EZH1 and EZH2 are functionally redundant in the slowly proliferating MPNST precursors. We provide evidence that the compensatory function of EZH1 is alleviated upon higher proliferation. This work reveals how context-dependent redundancies can shape tumor-type specific mutation patterns in chromatin regulators.
Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Neoplasias/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Línea Celular Tumoral , Proliferación Celular , Cromatina/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación/genética , Proteínas de Neoplasias , Neoplasias/genética , Neurofibroma/genética , Neurofibroma/metabolismo , Complejo Represivo Polycomb 2/genética , Factores de TranscripciónRESUMEN
Many patients with primary focal segmental glomerulosclerosis (FSGS) develop recurrence of proteinuria after kidney transplantation. Several circulating permeability factors (CPFs) responsible for recurrence have been suggested, but were never validated. We aimed to find proteins involved in the mechanism of action of CPF(s) and/or potential biomarkers for the presence of CPF(s). Cultured human podocytes were exposed to plasma from patients with FSGS with presumed CPF(s) or healthy and disease controls. Podocyte proteomes were analyzed by LC-MS. Results were validated using flow cytometry, RT-PCR, and immunofluorescence. Podocyte granularity was examined using flow cytometry, electron microscopy imaging, and BODIPY staining. Perilipin-2 protein expression was increased in podocytes exposed to presumed CPF-containing plasmas, and correlated with the capacity of plasma to induce podocyte granularity, identified as lipid droplet accumulation. Elevated podocyte perilipin-2 was confirmed at protein and mRNA level and was also detected in glomeruli of FSGS patients whose active disease plasmas induced podocyte perilipin-2 and lipid droplets. Our study demonstrates that presumably, CPF-containing plasmas from FSGS patients induce podocyte lipid droplet accumulation and perilipin-2 expression, identifying perilipin-2 as a potential biomarker. Future research should address the mechanism underlying CPF-induced alterations in podocyte lipid metabolism, which ultimately may result in novel leads for treatment.
Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Podocitos , Humanos , Podocitos/metabolismo , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo , Gotas Lipídicas/metabolismo , Glomérulos Renales/metabolismo , Biomarcadores/metabolismoRESUMEN
PIWI-interacting RNAs (piRNAs) comprise a class of small RNAs best known for suppressing transposable elements in germline tissues. The vector mosquito Aedes aegypti encodes seven PIWI genes, four of which are somatically expressed. This somatic piRNA pathway generates piRNAs from viral RNA during infection with cytoplasmic RNA viruses through ping-pong amplification by the PIWI proteins Ago3 and Piwi5. Yet, additional insights into the molecular mechanisms mediating non-canonical piRNA production are lacking. TUDOR-domain containing (Tudor) proteins facilitate piRNA biogenesis in Drosophila melanogaster and other model organisms. We thus hypothesized that Tudor proteins are required for viral piRNA production and performed a knockdown screen targeting all A. aegypti Tudor genes. Knockdown of the Tudor genes AAEL012437, Vreteno, Yb, SMN and AAEL008101-RB resulted in significantly reduced viral piRNA levels, with AAEL012437-depletion having the strongest effect. This protein, which we named Veneno, associates directly with Ago3 in an sDMA-dependent manner and localizes in cytoplasmic foci reminiscent of piRNA processing granules of Drosophila. Veneno-interactome analyses reveal a network of co-factors including the orthologs of the Drosophila piRNA pathway components Vasa and Yb, which in turn interacts with Piwi5. We propose that Veneno assembles a multi-protein complex for ping-pong dependent piRNA production from viral RNA.
Asunto(s)
Aedes/genética , Proteínas de Drosophila/genética , ARN Interferente Pequeño/genética , Dominio Tudor/genética , Aedes/patogenicidad , Animales , Proteínas Argonautas/genética , Elementos Transponibles de ADN/genética , Drosophila melanogaster/genética , Células Germinativas/crecimiento & desarrollo , Mosquitos Vectores/genética , Complejos Multiproteicos/genéticaRESUMEN
Deregulation of lysine methylation signalling has emerged as a common aetiological factor in cancer pathogenesis, with inhibitors of several histone lysine methyltransferases (KMTs) being developed as chemotherapeutics. The largely cytoplasmic KMT SMYD3 (SET and MYND domain containing protein 3) is overexpressed in numerous human tumours. However, the molecular mechanism by which SMYD3 regulates cancer pathways and its relationship to tumorigenesis in vivo are largely unknown. Here we show that methylation of MAP3K2 by SMYD3 increases MAP kinase signalling and promotes the formation of Ras-driven carcinomas. Using mouse models for pancreatic ductal adenocarcinoma and lung adenocarcinoma, we found that abrogating SMYD3 catalytic activity inhibits tumour development in response to oncogenic Ras. We used protein array technology to identify the MAP3K2 kinase as a target of SMYD3. In cancer cell lines, SMYD3-mediated methylation of MAP3K2 at lysine 260 potentiates activation of the Ras/Raf/MEK/ERK signalling module and SMYD3 depletion synergizes with a MEK inhibitor to block Ras-driven tumorigenesis. Finally, the PP2A phosphatase complex, a key negative regulator of the MAP kinase pathway, binds to MAP3K2 and this interaction is blocked by methylation. Together, our results elucidate a new role for lysine methylation in integrating cytoplasmic kinase-signalling cascades and establish a pivotal role for SMYD3 in the regulation of oncogenic Ras signalling.
Asunto(s)
Transformación Celular Neoplásica/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Lisina/metabolismo , MAP Quinasa Quinasa Quinasa 2/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Proteína Oncogénica p21(ras)/metabolismo , Adenocarcinoma/enzimología , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Modelos Animales de Enfermedad , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , MAP Quinasa Quinasa Quinasa 2/química , Quinasas Quinasa Quinasa PAM/química , Metilación , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína Oncogénica p21(ras)/genética , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas A-raf/metabolismo , Transducción de SeñalRESUMEN
Dominant-negative mutations in the transcription factor Growth Factor Independence-1B (GFI1B), such as GFI1BQ287*, cause a bleeding disorder characterized by a plethora of megakaryocyte and platelet abnormalities. The deregulated molecular mechanisms and pathways are unknown. Here we show that both normal and Q287* mutant GFI1B interacted most strongly with the lysine specific demethylase-1 - REST corepressor - histone deacetylase (LSD1-RCOR-HDAC) complex in megakaryoblasts. Sequestration of this complex by GFI1BQ287* and chemical separation of GFI1B from LSD1 induced abnormalities in normal megakaryocytes comparable to those seen in patients. Megakaryocytes derived from GFI1BQ287*-induced pluripotent stem cells also phenocopied abnormalities seen in patients. Proteome studies on normal and mutant-induced pluripotent stem cell-derived megakaryocytes identified a multitude of deregulated pathways downstream of GFI1BQ287* including cell division and interferon signaling. Proteome studies on platelets from GFI1BQ287* patients showed reduced expression of proteins implicated in platelet function, and elevated expression of proteins normally downregulated during megakaryocyte differentiation. Thus, GFI1B and LSD1 regulate a broad developmental program during megakaryopoiesis, and GFI1BQ287* deregulates this program through LSD1-RCOR-HDAC sequestering.
Asunto(s)
Trastornos de la Coagulación Sanguínea/patología , Plaquetas/patología , Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/patología , Megacariocitos/patología , Mutación , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Trastornos de la Coagulación Sanguínea/genética , Trastornos de la Coagulación Sanguínea/metabolismo , Plaquetas/metabolismo , Diferenciación Celular , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Megacariocitos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Mapas de Interacción de Proteínas , Proteoma/análisis , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismoRESUMEN
In recent years, cross-linking mass spectrometry has proven to be a robust and effective method of interrogating macromolecular protein complex topologies at peptide resolution. Traditionally, cross-linking mass spectrometry workflows have utilized homogenous complexes obtained through time-limiting reconstitution, tandem affinity purification, and conventional chromatography workflows. Here, we present cross-linking immunoprecipitation-MS (xIP-MS), a simple, rapid, and efficient method for structurally probing chromatin-associated protein complexes using small volumes of mammalian whole cell lysates, single affinity purification, and on-bead cross-linking followed by LC-MS/MS analysis. We first benchmarked xIP-MS using the structurally well-characterized phosphoribosyl pyrophosphate synthetase complex. We then applied xIP-MS to the chromatin-associated cohesin (SMC1A/3), XRCC5/6 (Ku70/86), and MCM complexes, and we provide novel structural and biological insights into their architectures and molecular function. Of note, we use xIP-MS to perform topological studies under cell cycle perturbations, showing that the xIP-MS protocol is sufficiently straightforward and efficient to allow comparative cross-linking experiments. This work, therefore, demonstrates that xIP-MS is a robust, flexible, and widely applicable methodology for interrogating chromatin-associated protein complex architectures.
Asunto(s)
Cromatina/metabolismo , Inmunoprecipitación/métodos , Espectrometría de Masas/métodos , Complejos Multiproteicos/química , Complejos Multiproteicos/aislamiento & purificación , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/aislamiento & purificación , Cromatografía Liquida , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/aislamiento & purificación , Reactivos de Enlaces Cruzados , Células HeLa , Humanos , Proteínas de Mantenimiento de Minicromosoma/química , Proteínas de Mantenimiento de Minicromosoma/aislamiento & purificación , Modelos Moleculares , Estructura Cuaternaria de Proteína , Ribosa-Fosfato Pirofosfoquinasa/química , Ribosa-Fosfato Pirofosfoquinasa/aislamiento & purificación , CohesinasRESUMEN
Recent work from others and us revealed interactions between the Sin3/HDAC complex, the H3K4me3 demethylase KDM5A, GATAD1, and EMSY. Here, we characterize the EMSY/KDM5A/SIN3B complex in detail by quantitative interaction proteomics and ChIP-sequencing. We identify a novel substoichiometric interactor of the complex, transcription factor ZNF131, which recruits EMSY to a large number of active, H3K4me3 marked promoters. Interestingly, using an EMSY knock-out line and subsequent rescue experiments, we show that EMSY is in most cases positively correlated with transcriptional activity of its target genes and stimulates cell proliferation. Finally, by immunohistochemical staining of primary breast tissue microarrays we find that EMSY/KDM5A/SIN3B complex subunits are frequently overexpressed in primary breast cancer cases in a correlative manner. Taken together, these data open venues for exploring the possibility that sporadic breast cancer patients with EMSY amplification might benefit from epigenetic combination therapy targeting both the KDM5A demethylase and histone deacetylases.
Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteínas de Unión al ADN/genética , Femenino , Técnicas de Inactivación de Genes , Células HeLa , Histonas/genética , Humanos , Complejos Multiproteicos/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética , Proteína 2 de Unión a Retinoblastoma/genética , Proteína 2 de Unión a Retinoblastoma/metabolismo , Factores de Transcripción/genéticaRESUMEN
Aberrant telomerase reactivation in differentiated cells represents a major event in oncogenic transformation. Recurrent somatic mutations in the human telomerase reverse transcriptase (TERT) promoter region, predominantly localized to two nucleotide positions, are highly prevalent in many cancer types. Both mutations create novel consensus E26 transformation-specific (ETS) motifs and are associated with increased TERT expression. Here, we perform an unbiased proteome-wide survey of transcription factor binding at TERT promoter mutations in melanoma. We observe ELF1 binding at both mutations in vitro and we show that increased recruitment of GABP is enabled by the spatial architecture of native and novel ETS motifs in the TERT promoter region. We characterize the dynamics of competitive binding between ELF1 and GABP and provide evidence for ELF1 exclusion by transcriptionally active GABP. This study thus provides an important description of proteome-wide, mutation-specific binding at the recurrent, oncogenic TERT promoter mutations.
Asunto(s)
Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Regulación Neoplásica de la Expresión Génica , Mutación , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Telomerasa/metabolismo , Factores de Transcripción/metabolismo , Sitios de Unión , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Factor de Transcripción de la Proteína de Unión a GA/genética , Humanos , Melanocitos/metabolismo , Melanocitos/patología , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Motivos de Nucleótidos , Unión Proteica , Mapeo de Interacción de Proteínas , Proteómica/métodos , Transducción de Señal , Telomerasa/genética , Factores de Transcripción/genéticaRESUMEN
Many cellular proteins assemble into macromolecular protein complexes. The identification of protein-protein interactions and quantification of their stoichiometry is therefore crucial to understand the molecular function of protein complexes. Determining the stoichiometry of protein complexes is usually achieved by mass spectrometry-based methods that rely on introducing stable isotope-labeled reference peptides into the sample of interest. However, these approaches are laborious and not suitable for high-throughput screenings. Here, we describe a robust and easy to implement label-free relative quantification approach that combines the detection of high-confidence protein-protein interactions with an accurate determination of the stoichiometry of the identified protein-protein interactions in a single experiment. We applied this method to two chromatin-associated protein complexes for which the stoichiometry thus far remained elusive: the MBD3/NuRD and PRC2 complex. For each of these complexes, we accurately determined the stoichiometry of the core subunits while at the same time identifying novel interactors and their stoichiometry.
Asunto(s)
Cromatina/química , Proteínas Cromosómicas no Histona/análisis , Espectrometría de Masas , Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , Proteínas de Ciclo Celular/análisis , Enzimas Reparadoras del ADN/análisis , Proteínas de Unión al ADN/análisis , Células HeLa , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/análisis , Proteínas Nucleares/análisis , Complejo Represivo Polycomb 2/análisis , Subunidades de Proteína/análisis , Factores de Empalme de ARN , Proteínas de Unión al ARN/análisisRESUMEN
MBD5 and MBD6 are two members of the methyl-CpG-binding domain (MBD) family of proteins that are poorly characterized. Studies performed thus far have failed to show binding of the MBD5 and MBD6 MBD to methylated DNA. Here, we show that both MBD5 and MBD6 interact with the mammalian PR-DUB Polycomb protein complex in a mutually exclusive manner. Strikingly, the MBD of MBD5 and MBD6 is both necessary and sufficient to mediate this interaction. Chromatin immunoprecipitation analyses reveal that MBD6 and FOXK2/PR-DUB share a subset of genomic target genes, suggesting a functional interaction in vivo. Finally, we show that MBD6, but not MBD5, is recruited to sites of DNA damage in a PR-DUB independent manner. Our study thus implies a shared function for MBD5 and MBD6 through an interaction with PR-DUB, as well as an MBD6-specific recruitment to sites of DNA damage.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Secuencia de Aminoácidos , Cromatina , Daño del ADN , Metilación de ADN , Factores de Transcripción Forkhead , Células HEK293 , Células HeLa , Humanos , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismoRESUMEN
Accurate and sensitive detection of protein-protein and protein-RNA interactions is key to understanding their biological functions. Traditional methods to identify these interactions require cell lysis and biochemical manipulations that exclude cellular compartments that cannot be solubilized under mild conditions. Here, we introduce an in vivo proximity labeling (IPL) technology that employs an affinity tag combined with a photoactivatable probe to label polypeptides and RNAs in the vicinity of a protein of interest in vivo. Using quantitative mass spectrometry and deep sequencing, we show that IPL correctly identifies known protein-protein and protein-RNA interactions in the nucleus of mammalian cells. Thus, IPL provides additional temporal and spatial information for the characterization of biological interactions in vivo.
Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Coloración y Etiquetado/métodos , Biotina/química , Biotina/metabolismo , Cromatografía Liquida , Proteína Potenciadora del Homólogo Zeste 2 , Células HEK293 , Humanos , Modelos Moleculares , Estructura Molecular , Conformación de Ácido Nucleico , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN/química , Proteínas de Unión al ARN/química , Análisis de Secuencia de ARN/métodos , Estreptavidina/química , Estreptavidina/metabolismo , Espectrometría de Masas en TándemRESUMEN
Gastrulation is a critical stage in embryonic development during which the germ layers are established. Advances in sequencing technologies led to the identification of gene regulatory programs that control the emergence of the germ layers and their derivatives. However, proteome-based studies of early mammalian development are scarce. To overcome this, we utilized gastruloids and a multilayered mass spectrometry-based proteomics approach to investigate the global dynamics of (phospho) protein expression during gastruloid differentiation. Our findings revealed many proteins with temporal expression and unique expression profiles for each germ layer, which we also validated using single-cell proteomics technology. Additionally, we profiled enhancer interaction landscapes using P300 proximity labeling, which revealed numerous gastruloid-specific transcription factors and chromatin remodelers. Subsequent degron-based perturbations combined with single-cell RNA sequencing (scRNA-seq) identified a critical role for ZEB2 in mouse and human somitogenesis. Overall, this study provides a rich resource for developmental and synthetic biology communities endeavoring to understand mammalian embryogenesis.