RESUMEN
Organophosphate ester flame retardants and plasticizers (OPEs) are common exposures in modern built environments. Toxicological models report that some OPEs reduce dopamine and serotonin in the brain. Deficiencies in these neurotransmitters are associated with anxiety and depression. We hypothesized that exposure to higher concentrations of OPEs in house dust would be associated with a greater risk of depression and stress in mothers across the prenatal and postpartum periods. We conducted a nested prospective cohort study using data collected on mothers (n = 718) in the CHILD Cohort Study, a longitudinal multi-city Canadian birth cohort (2008-2012). OPEs were measured in house dust sampled at 3-4 months postpartum. Maternal depression and stress were measured at 18 and 36 weeks gestation and 6 months and 1 year postpartum using the Centre for Epidemiologic Studies for Depression Scale (CES-D) and Perceived Stress Scale (PSS). We used linear mixed models to examine the association between a summed Z-Score OPE index and continuous depression and stress scores. In adjusted models, one standard deviation increase in the OPE Z-score index was associated with a 0.07-point (95% CI: 0.01, 0.13) increase in PSS score. OPEs were not associated with log-transformed CES-D (ß: 0.63%, 95% CI: -0.18%, 1.46%). The effect of OPEs on PSS score was strongest at 36 weeks gestation and weakest at 1 year postpartum. We observed small increases in maternal perceived stress levels, but not depression, with increasing OPEs measured in house dust during the prenatal and early postpartum period in this cohort of Canadian women. Given the prevalence of prenatal and postpartum anxiety and the ubiquity of OPE exposures, additional research is warranted to understand if these chemicals affect maternal mental health.
Asunto(s)
Retardadores de Llama , Embarazo , Humanos , Femenino , Retardadores de Llama/toxicidad , Plastificantes/toxicidad , Estudios de Cohortes , Estudios Prospectivos , Polvo , Canadá/epidemiología , Ésteres , Organofosfatos/toxicidad , Evaluación de Resultado en la Atención de SaludRESUMEN
Seawater Mg:Ca and Sr:Ca ratios are biogeochemical parameters reflecting the Earth-ocean-atmosphere dynamic exchange of elements. The ratios' dependence on the environment and organisms' biology facilitates their application in marine sciences. Here, we present a measured single-laboratory dataset, combined with previous data, to test the assumption of limited seawater Mg:Ca and Sr:Ca variability across marine environments globally. High variability was found in open-ocean upwelling and polar regions, shelves/neritic and river-influenced areas, where seawater Mg:Ca and Sr:Ca ratios range from â¼4.40 to 6.40 mmol:mol and â¼6.95 to 9.80 mmol:mol, respectively. Open-ocean seawater Mg:Ca is semiconservative (â¼4.90 to 5.30 mol:mol), while Sr:Ca is more variable and nonconservative (â¼7.70 to 8.80 mmol:mol); both ratios are nonconservative in coastal seas. Further, the Ca, Mg, and Sr elemental fluxes are connected to large total alkalinity deviations from International Association for the Physical Sciences of the Oceans (IAPSO) standard values. Because there is significant modern seawater Mg:Ca and Sr:Ca ratios variability across marine environments we cannot absolutely assume that fossil archives using taxa-specific proxies reflect true global seawater chemistry but rather taxa- and process-specific ecosystem variations, reflecting regional conditions. This variability could reconcile secular seawater Mg:Ca and Sr:Ca ratio reconstructions using different taxa and techniques by assuming an error of 1 to 1.50 mol:mol, and 1 to 1.90 mmol:mol, respectively. The modern ratios' variability is similar to the reconstructed rise over 20 Ma (Neogene Period), nurturing the question of seminonconservative behavior of Ca, Mg, and Sr over modern Earth geological history with an overlooked environmental effect.
RESUMEN
Eleven organophosphate esters (OPEs) were detected in surface water and sediment samples from yearly sampling (2013-2018) in the Canadian Arctic. In water samples, ∑chlorinated-OPEs (Cl-OPEs) concentrations exceeded ∑non-chlorinated-OPEs (non-Cl-OPEs) with median concentrations of 10 ng L-1 and 1.3 ng L-1, respectively. In sediment samples, ∑Cl-OPEs and ∑nonchlorinated-OPEs had median concentrations of 4.5 and 2.5 ng g-1, respectively. High concentrations of OPEs in samples from the Mackenzie River plume suggest riverine discharge as an OPE source to the Canadian Arctic. The prevalence of OPEs at other sites is consistent with long-range transport. The OPE inventory of the Canadian Arctic Ocean representative of years 2013-2018 was estimated at 450-16,000 tonnes with a median ∑11OPE mass of 4100 tonnes with >99% of the OPE inventory estimated to be in the water column. These results highlight the importance of OPEs as water-based Arctic contaminants subject to long-range transport and local sources. The high OPE inventory in the water column of the Canadian Arctic Ocean points to the need for international regulatory mechanisms for persistent and mobile organic contaminants (PMOCs) that are not covered by the risk assessment criteria of the Stockholm Convention.
Asunto(s)
Monitoreo del Ambiente , Retardadores de Llama , Regiones Árticas , Canadá , China , Ésteres , Océanos y Mares , Organofosfatos/análisisRESUMEN
Accurate values of physicochemical properties are essential for screening semivolatile organic compounds for human and environmental hazard and risk. In silico approaches for estimation are widely used, but the accuracy of these and measured values can be difficult to ascertain. Final adjusted values (FAVs) harmonize literature-reported measurements to ensure consistency and minimize uncertainty. We propose a workflow, including a novel Bayesian approach, for estimating FAVs that combines measurements using direct and indirect methods and in silico values. The workflow was applied to 74 compounds across nine classes to generate recommended FAVs (FAVRs). Estimates generated by in silico methods (OPERA, COSMOtherm, EPI Suite, SPARC, and polyparameter linear free energy relationships (pp-LFER) models) differed by orders of magnitude for some properties and compounds and performed systematically worse for larger, more polar compounds. COSMOtherm and OPERA generally performed well with low bias although no single in silico method performed best across all compound classes and properties. Indirect measurement methods produced highly accurate and precise estimates compared with direct measurement methods. Our Bayesian method harmonized measured and in silico estimated physicochemical properties without introducing observable biases. We thus recommend use of the FAVRs presented here and that the proposed Bayesian workflow be used to generate FAVRs for SVOCs beyond those in this study.
Asunto(s)
Monitoreo del Ambiente , Compuestos Orgánicos , Teorema de Bayes , HumanosRESUMEN
BACKGROUND: Studies have demonstrated an association between phthalate exposure and childhood asthma, although results have been inconsistent. No epidemiological studies have examined exposure during the first year of life. OBJECTIVE: To investigate the association between phthalate exposures in the home environment during the first year of life, and subsequent development of childhood asthma and related symptoms. METHODS: This study used a case-cohort design including 436 randomly selected children and all additional cases of asthma at 5 years (ntotal = 129) and recurrent wheeze between 2 and 5 years (ntotal = 332) within the CHILD Cohort Study, a general population Canadian birth cohort of 3455 children. Phthalate exposure was assessed using house dust samples collected during a standardized home visit when children were 3-4 months of age. All children were assessed by specialist clinicians for asthma and allergy at 1, 3 and 5 years. Logistic regression was used to assess the association between exposure to five phthalates and asthma diagnosis at 5 years, and recurrent wheeze between 2 and 5 years, with further stratification by wheeze subtypes (late onset, persistent, transient) based on the timing of onset and persistence of wheeze symptoms. RESULTS: Di(2-ethylhexyl) phthalate (DEHP) had the highest concentration in dust (mediansubcohort = 217 µg/g), followed by benzyl butyl phthalate (BzBP) (20 µg/g). A nearly four-fold increase in risk of developing asthma was associated with the highest concentration quartile of DEHP (OR = 3.92, 95% CI: 1.87-8.24) including a positive dose-response relationship. A two-fold increase in risk of recurrent wheeze was observed across all quartiles compared to the lowest quartile of DEHP concentrations. Compared to other wheeze subtypes, stronger associations for DEHP were observed with the late onset wheezing subtype, while stronger associations for di-iso-butyl phthalate (DiBP) and BzBP were observed with the transient subtype. DISCUSSION: DEHP exposure at 3-4 months, at concentrations lower than other studies that reported an association, were associated with increased risks of asthma and recurrent wheeze among children at 5 years. These findings suggest the need to assess whether more stringent regulations are required to protect children's health, which can be informed by future work exploring the main sources of DEHP exposure.
Asunto(s)
Asma , Ácidos Ftálicos , Asma/inducido químicamente , Asma/epidemiología , Canadá/epidemiología , Niño , Estudios de Cohortes , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Ácidos Ftálicos/toxicidadRESUMEN
Exposure to phthalates is pervasive and is of concern due to associations with adverse health effects. Exposures and exposure pathways of six phthalates were investigated for 51 women aged 18-44 years in Ontario, Canada, based on measured phthalate concentrations in hand wipes and indoor media in their residences. All six phthalates had detection frequencies of 100% in air (∑6670 ng m-3 geomean) and floor dust (∑6630 µg g-1), nearly 100% detection frequencies for hand palms and backs that were significantly correlated and concentrations were repeatable over a 3 week interval. Phthalates on hands were significantly correlated with levels in air and dust, as expected according to partitioning theory. Total exposure was estimated as 4860 ng kg bw-1 day-1 (5th and 95th percentiles 1980-16â¯950 ng kg bw-1 day-1), with dust ingestion, followed by hand-to-mouth transfer, as the dominant pathways. With the exception of diethyl phthalate (DEP), phthalates had over 50% detection frequencies in surface wipes of most electronic devices sampled, including devices in which the use of phthalates was not expected. Phthalate concentrations on surfaces of hand-held devices were â¼10 times higher than on non-hand-held devices and were correlated with levels on hands. The data are consistent with phthalate emissions from sources such as laminate flooring and personal care products (e.g., scented candles), followed by partitioning among air, dust, and surface films that accumulate on electronic devices and skin, including hands. We hypothesize that hands transfer phthalates from emission sources and dust to hand-held electronic devices, which accumulate phthalates due to infrequent washing and which act as a sink and then a secondary source of exposure. The findings support those of others that exposure can be mitigated by increasing ventilation, damp cloth cleaning, and minimizing the use of phthalate-containing products and materials.
Asunto(s)
Contaminación del Aire Interior , Ácidos Ftálicos , Adolescente , Adulto , Polvo/análisis , Exposición a Riesgos Ambientales/análisis , Femenino , Vivienda , Humanos , Ontario , Ácidos Ftálicos/análisis , Adulto JovenRESUMEN
Silicone passive samplers were assessed for measuring personal exposure to 37 flame retardants at three Québec e-waste recycling facilities. Silicone brooches (n = 45), wristbands (n = 28), and armbands (n = 9) worn during a â¼8 h work shift accumulated detectable amounts of 95-100% of the target compounds. Brooch concentrations were significantly correlated with those from active air samplers from which we conclude that the brooches could be used to approximate inhalation exposure and other exposures related to air concentrations such as dermal exposure. The generic sampling rate of the brooch (19 ± 11 m3 day-1 dm-2) was 13 and 22 times greater than estimated for home and office environments, respectively, likely because of the dusty work environment and greater movement of e-waste workers. BDE-209 concentrations in brooches and wristbands were moderately and significantly (p < 0.05) correlated with levels in blood plasma; organophosphorus esters in brooches and wristbands were weakly and insignificantly correlated with their metabolite biomarkers in post-shift spot urine samples. Silicone brooches and wristbands deployed over a single shift in a dusty occupational setting can be useful for indicating the internal exposure to compounds with relatively long biological half-lives, but their use for compounds with relatively short half-lives is not clear and may require either a longer deployment time or an integrated biomarker measure.
Asunto(s)
Residuos Electrónicos , Retardadores de Llama , Exposición Profesional , Monitoreo del Ambiente , Retardadores de Llama/análisis , Humanos , Organofosfatos , Quebec , SiliconasRESUMEN
Organophosphate esters (OPEs) in air have been found to be captured entirely on filters of typical active air samplers and thus designated as being in the particle phase. However, this particle fraction is unexpected, especially for more volatile tris(2-chloroethyl) phosphate (TCEP) and tris(chloroisopropyl) phosphate (TCIPP). We evaluated gas-particle partitioning in indoor and outdoor air for OPEs and polybrominated diphenyl ethers (PBDEs) using single-parameter models (Junge-Pankow, Harner-Bidleman) and poly-parameter linear free energy relationship (pp-LFER) models. We also used the pp-LFER to estimate filter-air partitioning in active air samplers. We found that all gas-particle partitioning models predicted that TCEP and TCIPP should be in the gas phase, contrary to measurements. The pp-LFER better accounted for OPE measurements than the single-parameter models, except for TCEP and TCIPP. Gas-particle partitioning of PBDEs was reasonably explained by all models. The pp-LFER for filter-air partitioning showed that gas-phase sorption to glass and especially quartz fiber filters used for active air samplers could account for up to 100% of filter capture and explain the high particle fractions reported for TCIPP, tris(1,3-dichloro-2-propyl) phosphate TDCIPP, and triphenyl phosphate TPhP, but not TCEP. The misclassification of gas-particle partitioning can result in erroneous estimates of the fraction of chemical subject to gas-phase reactions and atmospheric scavenging and, hence, atmospheric long-range transport.
Asunto(s)
Retardadores de Llama , Ésteres , Éteres Difenilos Halogenados , OrganofosfatosRESUMEN
Organophosphate esters (OPEs), used as flame retardants and plasticizers, occur at relatively high concentrations in urban air and surface waters. We tested the hypothesis that some OPEs could be considered persistent and mobile organic compounds (PMOCs), using the poly parameter linear free energy relationship-modified Multimedia Urban Model (ppLFER-MUM) in Toronto, Canada, as a case study. Modeled air emissions of ∑6OPEs of 3300 (190-190â¯000) kg yr-1 were 10-100 times higher than emissions of polychlorinated biphenyls (∑5PCBs) and polybrominated diphenyl ethers (∑5PBDEs). Model results suggested that measured ∑6OPE stream concentrations of â¼2000 ng L-1 originate from emissions to urban air transferred to water mostly via precipitation. Water transport removed 7-28% of total air inputs compared to 0.1-10% for PCBs and 2-10% for PBDEs. Chlorinated OPEs were efficiently transported via surface water due to their persistence and high solubility. Loadings of ∑6OPEs to Lake Ontario from wastewater treatment plants, streams, and atmospheric deposition were 70%, 18%, and 13%, respectively, of ∑6OPE loadings of 3100 (1200-45â¯000) kg yr-1. Our results support the hypothesis that three chlorinated OPEs, tris(2-chloroethyl)phosphate phosphate (TCEP), tris(chloroisopropyl)phosphate (TCiPP), and tris(1,3-dichloroisopropyl)phosphate (TDCiPP), fit the profile of PMOCs due to their mobility and persistence in surface waters.
Asunto(s)
Retardadores de Llama , Multimedia , Monitoreo del Ambiente , Ontario , OrganofosfatosRESUMEN
Tris(chloropropyl) phosphate (TCPP) is an environmentally abundant organophosphate ester (OPE). TCPP is comprised of four isomers with seven possible structures, eight CAS numbers, and even more common names. A review of 54 studies reporting one or more TCPP isomers confirmed that the most abundant and most often reported TCPP isomer was tris(2-chloro-1-methylethyl) phosphate, also known as tris(chloroisopropyl) phosphate (TCiPP, referred to hereafter as TCPP1). Full-scan gas chromatography-mass spectrometry (GC-MS) was used to identify the other three isomers numbered here according to their elution order on a non-polar GC column (DB-5): bis(2-chloro-1-methylethyl) (2-chloropropyl) phosphate (TCPP2), bis(2-chloropropyl)(2-chloro-1-methylethyl) phosphate (TCPP3), and tris(2-chloropropyl) phosphate (TCPP4). GC with a flame ionization detector (FID) was used to identify the relative abundances of the isomers in commercially available standards with unknown isomer composition. In technical TCPP, TCPP1-4 isomers averaged 71 ± 1, 26 ± 0.4, 3 ± 0.5, and 0.1 ± 0.02%, respectively. When these percent masses are incorporated into GC-MS quantification, response factors (RFs) for TCPP1 and TCPP2 are significantly different from TCPP3 and TCPP4, indicating that the multiple RF approach is more accurate than the commonly employed single RF method. Samples from urban streams and wastewater treatment plant (WWTP) effluent from Toronto, Canada, had isomeric ratios of TCPP1/2 that were not significantly different from a technical mixture whereas rain had a significantly different ratio indicating enrichment in the more volatile TCPP1 isomer. Reporting TCPP isomers can provide insight into sources, transport, and fate of TCPP in the environment. Graphical Abstract á .
RESUMEN
Gas-particle partitioning is one of the key factors that affect the environmental fate of semivolatile organic chemicals. Many organophosphate esters (OPEs) have been reported to primarily partition to particles in the atmosphere. However, because of the wide range of their physicochemical properties, it is unlikely that OPEs are mainly in the particle phase "as a class". We compared gas-particle partitioning predictions for 32 OPEs made by the commonly used OECD POV and LRTP Screening Tool ("the Tool") with the partitioning models of Junge-Pankow (J-P) and Harner-Bidleman (H-B), as well as recently measured data on OPE gas-particle partitioning. The results indicate that half of the tested OPEs partition into the gas phase. Partitioning into the gas phase seems to be determined by an octanol-air partition coefficient (log KOA) < 10 and a subcooled liquid vapor pressure (log PL) > -5 (PL in Pa), as well as the total suspended particle concentration (TSP) in the sampling area. The uncertainty of the physicochemical property data of the OPEs did not change this estimate. Furthermore, the predictions by the Tool, J-P- and H-B-models agreed with recently measured OPE gas-particle partitioning.
Asunto(s)
Contaminantes Atmosféricos , Ésteres , Atmósfera/química , Modelos Teóricos , OrganofosfatosRESUMEN
Fourteen organophosphate esters (OPEs) were measured in the filter fraction of 117 active air samples from yearly ship-based sampling campaigns (2007-2013) and two land-based stations in the Canadian Arctic, to assess trends and long-range transport potential of OPEs. Four OPEs were detected in up to 97% of the samples, seven in 50% or less of the samples, and three were not detected. Median concentrations of ∑OPEs were 237 and 50 pg m(-3) for ship- and land-based samples, respectively. Individual median concentrations ranged from below detection to 119 pg m(-3) for ethanol, 2-chloro-, phosphate (3:1) (TCEP). High concentrations of up to 2340 pg m(-3) were observed for Tri-n-butyl phosphate (TnBP) at a land-based sampling location in Resolute Bay from 2012, whereas it was only detected in one ship-based sample at a concentration below 100 pg m(-3). Concentrations of halogenated OPEs seemed to be driven by river discharge from the Nelson and Churchill Rivers (Manitoba) and Churchill River and Lake Melville (Newfoundland and Labrador). In contrast, nonhalogenated OPE concentrations appeared to have diffuse sources or local sources close to the land-based sampling stations. Triphenyl phosphate (TPhP) showed an apparent temporal trend with a doubling-time of 11 months (p = 0.044). The results emphasize the increasing relevance of halogenated and nonhalogenated OPEs as contaminants in the Arctic.
Asunto(s)
Monitoreo del Ambiente , Ésteres , Canadá , Organofosfatos , RíosRESUMEN
RATIONALE: The manufacturing and uses of hexachlorocyclohexane (HCH) have resulted in a serious environmental challenge and legacy. This study highlights the ability of compound specific isotope analysis (CSIA) to distinguish among various HCH sources and to support the evaluation of the potential for in situ biodegradation in contaminated groundwater. METHODS: Tests were conducted to verify the absence of significant isotope fractionation during HCH sample pre-concentration including dichloromethane extraction, solvent exchange into iso-octane, and H2SO4 clean-up, and analysis by gas chromatography/combustion-isotope ratio mass spectrometry (GC/C-IRMS). The method was then applied to four Technical Grade (TG) HCH mixtures procured from different sources and to groundwater samples from a contaminated site. RESULTS: The pre-concentration method enabled determination of carbon isotope ratios (δ(13)C values) of HCH isomers with no significant isotopic fractionation. The TG-HCH mixtures had significantly different δ(13)C values. Moreover, for any given TG-HCH, all isomers had δ(13)C values within 1.1 of each other - a distinctly uniform fingerprint. At the HCH-contaminated field site, compared with source wells, downgradient wells showed significant (up to 5.1) enrichment in (13)C and the δ(13)C values of the HCH isomers were significantly different from each other. CONCLUSIONS: A method was successfully developed for the CSIA of HCH isomers that showed potential for HCH source differentiation and identification of HCH in situ biodegradation. At the HCH-contaminated site, the observed preferential isotopic enrichment of certain isomers relative to others for a given source allows differentiation between biodegraded and non-biodegraded HCH.
Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Hexaclorociclohexano/química , Contaminantes Químicos del Agua/química , Biodegradación Ambiental , Isótopos de Carbono/análisis , Monitoreo del Ambiente , Agua Subterránea/química , IsomerismoRESUMEN
The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and air-water exchange of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both air and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in air. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in air. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and air, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in air and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water-air fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR < 1.0) for ΣCHBs. Net deposition was shown for ENDO-I on all expeditions, while the net exchange direction of other CUPs varied. Understanding the processes and current state of air-surface exchange helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals.
Asunto(s)
Contaminantes Atmosféricos/análisis , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Regiones Árticas , Clordano/análisis , Clordano/química , Endosulfano/análogos & derivados , Endosulfano/análisis , Endosulfano/química , Monitoreo del Ambiente/métodos , Gases/análisis , Gases/química , Hidrocarburos Clorados/química , Océanos y Mares , Plaguicidas/química , Agua de Mar/análisis , Agua de Mar/química , Contaminantes del Suelo/análisis , VolatilizaciónRESUMEN
Archived specimens of the scavenging amphipod Eurythenes gryllus, collected from 2075 to 4250 m below the surface on five expeditions to the western and central Arctic Ocean between 1983 and 1998, were analyzed for total mercury (∑Hg), methyl mercury (MeHg), polychlorinated biphenyls (PCBs) and other industrial or byproduct organochlorines (chlorobenzenes, pentachloroanisole, octachlorostyrene), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs). Median ∑Hg concentrations ranged from 70 to 366 ng g(-1) wet weight (ww). MeHg concentrations (3.55 to 23.5 ng g(-1) ww) accounted for 1.7 to 20.1% (median 3.7%) of ∑Hg. ∑Hg and MeHg were positively and significantly correlated with ww (∑Hg r(2) = 0.18, p = 0.0004, n = 63; MeHg r(2) = 0.42, p = 0.0004, n = 25), but not significantly with δ(13)C nor δ(15)N. Median concentrations of total persistent organic pollutants (POPs) ranged from 9750 to 156,000 ng g(-1) lipid weight, with order of abundance: ∑TOX (chlorobornanes quantified as technical toxaphene) > ∑PCBs > ∑DDTs > ∑chlordanes > ∑mirex compounds > ∑BDEs â¼ ∑chlorobenzenes â¼ octachlorostyrene > α-hexachlorocyclohexane â¼ hexachlorobenzene â¼ pentachloroanisole. Enantioselective accumulation was found for the chiral OCPs o,p'-DDT, cis- and trans-chlordane, nonachlor MC6 and oxychlordane. Lipid-normalized POPs concentrations were elevated in amphipods with lipid percentages ≤10%, suggesting that utilization of lipids resulted in concentration of POPs in the remaining lipid pool. Multidimensional Scaling (MDS) analysis using log-transformed physiological variables and lipid-normalized organochlorine concentrations distinguished amphipods from the central vs western arctic stations. This distinction was also seen for PCB homologues, whereas profiles of other compound classes were more related to specific stations rather than central-west differences.
Asunto(s)
Anfípodos/fisiología , Cadena Alimentaria , Mercurio/análisis , Compuestos Orgánicos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Regiones Árticas , Isótopos de Carbono/análisis , DDT/análisis , Monitoreo del Ambiente/métodos , Éteres Difenilos Halogenados/análisis , Hidrocarburos Clorados/análisis , Lípidos/análisis , Compuestos de Metilmercurio/análisis , Océanos y Mares , Plaguicidas/análisis , Bifenilos Policlorados/análisis , Toxafeno/análisisRESUMEN
Shipboard measurements of organohalogen compounds in air and surface seawater were conducted in the Canadian Arctic in 2007-2008. Study areas included the Labrador Sea, Hudson Bay, and the southern Beaufort Sea. High volume air samples were collected at deck level (6 m), while low volume samples were taken at 1 and 15 m above the water or ice surface. Water samples were taken within 7 m. Water concentration ranges (pg L(-1)) were as follows: α-hexachlorocyclohexane (α-HCH) 465-1013, γ-HCH 150-254, hexachlorobenzene (HCB) 4.0-6.4, 2,4-dibromoanisole (DBA) 8.5-38, and 2,4,6-tribromoanisole (TBA) 4.7-163. Air concentration ranges (pg m(-3)) were as follows: α-HCH 7.5-48, γ-HCH 2.1-7.7, HCB 48-71, DBA 4.8-25, and TBA 6.4 - 39. Fugacity gradients predicted net deposition of HCB in all areas, while exchange directions varied for the other chemicals by season and locations. Net evasion of α-HCH from Hudson Bay and the Beaufort Sea during open water conditions was shown by air concentrations that averaged 14% higher at 1 m than 15 m. No significant difference between the two heights was found over ice cover. The α-HCH in air over the Beaufort Sea was racemic in winter (mean enantiomer fraction, EF = 0.504 ± 0.008) and nonracemic in late spring-early summer (mean EF = 0.476 ± 0.010). This decrease in EF was accompanied by a rise in air concentrations due to volatilization of nonracemic α-HCH from surface water (EF = 0.457 ± 0.019). Fluxes of chemicals during the southern Beaufort Sea open water season (i.e., Leg 9) were estimated using the Whitman two-film model, where volatilization fluxes are positive and deposition fluxes are negative. The means ± SD (and ranges) of net fluxes (ng m(-2) d(-1)) were as follows: α-HCH 6.8 ± 3.2 (2.7-13), γ-HCH 0.76 ± 0.40 (0.26-1.4), HCB -9.6 ± 2.7 (-6.1 to -15), DBA 1.2 ± 0.69 (0.04-2.0), and TBA 0.46 ± 1.1 ng m(-2) d(-1) (-1.6 to 2.0).
Asunto(s)
Contaminantes Atmosféricos/análisis , Hidrocarburos Halogenados/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/normas , Anisoles/análisis , Anisoles/normas , Regiones Árticas , Canadá , Monitoreo del Ambiente , Hidrocarburos Halogenados/química , Hidrocarburos Halogenados/normas , Modelos Químicos , Volatilización , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/normasRESUMEN
We report the first Canadian Arctic-wide study of anthropogenic particles (APs, >125 µm), including microfibers (synthetic, semi-synthetic and anthropogenically modified cellulose) and microplastics, in marine sediments from 14 sites. Samples from across the Canadian Arctic were collected between 2014 and 2017 from onboard the CCGS Amundsen. Samples were processed using density separation with calcium chloride (CaCl2). APs >125 µm were identified and a subset (22%) were characterized using Raman spectroscopy. Following blank-correction, microfiber numbers were corrected using Raman data in a novel approach to subtract possible "natural" cellulose microfibers with no anthropogenic signal via Raman spectroscopy, to estimate the proportion of cellulose microfibers that are of confirmed anthropogenic origin. Of all microfibers examined by Raman spectroscopy, 51% were anthropogenic cellulose, 11% were synthetic polymers, and 7% were extruded fibers emitting a dye signal. The remaining 31% of microfibers were identified as cellulosic but could not be confirmed as anthropogenic and thus were excluded from the final concentrations. Concentrations of confirmed APs in sediments ranged from 0.6 to 4.7 particles g-1 dry weight (dw). Microfibers comprised 82% of all APs, followed by fragments at 15%. Total microfiber concentrations ranged from 0.4 to 3.2 microfibers g-1 dw, while microplastic (fragments, foams, films and spheres) concentrations ranged from 0 to 1.6 microplastics g-1 dw. These concentrations may exceed those recorded in urban areas near point sources of plastic pollution, and indicate that the Canadian Arctic is a sink for APs, including anthropogenic cellulose fibers. Overall, we provide an important benchmark of AP contamination in Canadian Arctic marine sediments against which to measure temporal trends, including the effects of source reduction strategies and climate change, both of which will likely alter patterns of accumulation of anthropogenic particles.
RESUMEN
Scientists and decision makers need accurate, accessible and fast tools to assess and prioritize the persistence (POV) and environmental long-range transport potential (LRTP) of chemicals. Here we evaluated the Organisation for Economic Co-operation and Development (OECD) POV and LRTP Screening Tool ("the Tool") with respect to the POV and LRTP estimates that the Tool provides for organophosphate esters (OPEs). We found that the use of default parameter values could significantly underestimate POV and LRTP values of OPEs and, potentially, other Persistent Mobile Organic Compounds (PMOCs), by not accounting for episodic atmospheric transport and poleward river-based transport in the northern hemisphere. Specifically, sensitivity and Monte Carlo uncertainty analyses indicate that non-chlorinated OPEs could be subject to LRTP when uncertainties in gas-particle partitioning and its implications for atmospheric degradation are considered, and chlorinated OPEs when river-based transport is considered. Further, the analyses showed strong dependence of results on the accuracy of the environmental half-lives used as input parameters. We suggest that the Tool could be modified to include an optional "Arctic (PMOC) LRTP setting" that incorporates episodic atmospheric and river-based transport as well as decreased environmental half-lives due to cold temperatures.
Asunto(s)
Contaminantes Ambientales , Organización para la Cooperación y el Desarrollo Económico , Organofosfatos , Regiones Árticas , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Ésteres , Organofosfatos/análisisRESUMEN
Silicone (polydimethylsiloxane or PDMS) wristbands and cotton T-shirts were used to assess the exposure of e-waste recyclers in Dhaka, Bangladesh to polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), dechlorane plus (DPs), and organophosphate esters (OPEs). The median surface-normalized uptake rates of PBDEs, NBFRs, DPs, and OPEs were 170, 8.5, 4.8, and 270 ng/dm2/h for wristbands and 5.4, 2.0, 0.94, and 23 ng/dm2/h for T-shirts, respectively. Concentrations of Tris(2-chloroethyl) phosphate (TCEP), Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), Tri-m-cresyl phosphate (TmCP), Bis(2-ethlyhexyl) tetrabromophthalate (BEH-TEBP), and Dechlorane plus (DPs) in wristbands were significantly correlated with those in T-shirts. Wristbands accumulated ~7 times more mass than T-shirts, especially of compounds expected to be mainly in the gas phase. We introduce the silicone "sandwich" method to approximate the easily releasable fraction (ERF) from T-shirts, hypothesized to be related to dermal exposure. ERFs varied from 6 to 75% of total chemical accumulated by T-shirts and were significantly negatively correlated with compounds' octanol-air partition coefficient (log Koa). The median daily exposure doses via dermal transfer from the front of the T-shirt to the front body trunk were 0.32, 0.13, 0.11, and 9.1 ng/kg-BW/day for PBDEs, NBFRs, DPs, and OPEs, respectively. The evidence of e-waste recycler exposure to flame retardants in this low income country, lacking protective personal equipment, calls for measures to minimize their exposure and for chemical management regulations to consider exposures to chemicals in waste products.
Asunto(s)
Residuos Electrónicos , Bangladesh , Monitoreo del Ambiente , Ésteres , Retardadores de Llama , Éteres Difenilos Halogenados , Organofosfatos , SiliconasRESUMEN
Exposure of e-waste workers to eight halogenated and five organophosphate ester flame retardant chemicals (FRs) was studied at a Canadian e-waste dismantling facility. FR concentrations were measured in air and dust samples collected at a central location and at four work benches over five-24 hour periods spanning two weeks. The highest concentrations in air from workbenches were of BDE-209 (median 156â¯ngâ¯m-3), followed by Tris(2-chloroethyl) phosphate (TCEP, median 59â¯ngâ¯m-3). Dust concentrations at the workbenches were higher than those measured at the central location, consistent with the release of contaminated dust during dismantling. Dust concentrations from the workbenches were also dominated by BDE-209 (median 96,300â¯ngâ¯g-1), followed by Triphenyl phosphate (TPhP, median 47,000â¯ngâ¯g-1). Most FRs were in coarse particles 5.6-18⯵m diameter and ~30% were in respirable particles (<~3⯵m). Exposure estimates indicated that dust ingestion accounted for 63% of total FR exposure; inhalation and dermal absorption contributed 35 and 2%, respectively. Some air and dust concentrations as well as some estimated exposures in this formal facility in a high-income country exceeded those from informal e-waste facilities located in low and middle income countries. Although there is demonstrated toxicity of some FRs, FR exposure in the e-waste industry has received minimal attention and occupational limits do not exist for most FRs.