RESUMEN
Characterization of Cd-binding proteins has great analytical interest due to the high toxicity of Cd to living organisms. Metallothioneins (MTs), as Cd(II)-binding proteins are of increasing interest, since they form very stable Cd chelates and are involved in many detoxification processes. In this work, inductively coupled plasma octopole reaction cell mass spectrometry and nanospray ionization time-of-flight mass spectrometry were used in parallel and combined with two-dimensional chromatography: size exclusion followed by reversed-phase high performance liquid chromatography, to study metal complexes of MT isoforms produced in hepatic cytosols of Mus musculus during exposure experiments to Cd. Exposure experiments were carried out by subcutaneous injection of a growing dose of the toxic element ranging from 0.1 to 1.0 mg of Cd per kg of body weight per day during 10 days. A control group and three exposure groups at days 2, 6 and 10 of exposure were studied, and different cadmium, copper and zinc complexes with MTs isoforms were isolated and characterized from the two most exposed groups. The results allow gaining insight into the mechanisms involved in metal detoxification by MTs, showing the changes in the stoichiometry of metal complexes-MTs along cadmium exposure.
Asunto(s)
Cadmio/toxicidad , Hepatocitos/metabolismo , Metalotioneína/metabolismo , Isoformas de Proteínas/metabolismo , Animales , Cadmio/metabolismo , Hepatocitos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB CRESUMEN
A metallomic analytical approach based on the use of size exclusion chromatography coupled to ICP-MS has been used to obtain metal profiles related to overexpression or inhibition of metal-binding biomolecules, which is connected to exposure experiment of laboratory mice Mus musculus to toxic metals, such as Cd, Hg and As. Exposure to Cd induces the formation of Cd-metallothionein in liver that reveals the protective role of this organ; however, exposure to Hg reduces the intensity of the peak associated to Cu-superoxide dismutase (Cu-SOD) while Hg-SOD peak increases, which suggests the competence of Cu and Hg for the active sites of SOD in liver that causes mercury translocation to kidney, in which the concentration of Hg as Hg-metallothionein increases drastically to be excreted by urine. It has been also observed the protective effect of selenium on mercury toxicity in blood plasma, which produces decreasing of the intensity of Se-protein in plasma with Hg exposure and correlative increases of Hg-albumin that transport mercury to kidney for excretion. Finally, arsenic exposure provokes the accumulation of small metabolites of this element, such as dimethylarsenic and monomethylarsenic for excretion. The application of the metallomic approach to liver extracts from free-living mouse Mus spretus shows the overexpression of Cu, Zn and Cd-peaks at 7 kDa (related to metal-metallothionein) in environmental contaminated sites, as well as the increase of peaks related to Cu- and Zn-SOD and Zn-albumin. However, in kidney, can be checked the presence of high concentration of arsenic small metabolites in contaminated areas, similarly to results found in exposure experiments. In addition, the application of a metabolomic approach based on direct infusion mass spectrometry to organ extracts (liver, kidney and serum) from mice (M. musculus) exposed to arsenic reveals important metabolic changes related to antioxidative activity, membrane cell damage, energy metabolism and arsenic elimination. Similar results were obtained from free-living mouse (M. spretus) from areas contaminated with arsenic. The integration of metallomics and metabolomics results provides a more comprehensive evaluation about the biological response in exposure experiments to toxic metals as well as in environmental assessment of contamination.
Asunto(s)
Metales/metabolismo , Metales/toxicidad , Animales , Exposición a Riesgos Ambientales/efectos adversos , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Espectrometría de Masas , Metabolómica , RatonesRESUMEN
A metallomic approach based on the use of size-exclusion chromatography (Superdex-75) with inductively coupled plasma mass spectrometry (ICP-MS) detection is combined with anion or cation exchange chromatography to characterize the biological response of the free-living mouse Mus spretus. The approach has been applied to contaminated and non-contaminated areas from Doñana National Park (southwest Spain) and the surroundings. Several areas affected by differential contamination from mining, industrial, and agricultural activities have been considered. The high presence of Mn, Cu, and Zn in liver and As and Cd in kidney is remarkable, especially in contaminated areas. The size exclusion chromatograms traced by Mn in liver cytosolic extracts are more intense than in kidney; a Mn-peak matching with the standard of 32 kDa (superoxide dismutase) is present in these organs, and its intensity is correlated with the concentration of Mn in the extracts. High-intensity peaks traced by Cu, Zn, and Cd at 7 kDa (matching with metallothionein I standard) in liver extract are triggered by the presence of contaminants. Other peaks related with molecules of 32 and 67 kDa traced by Cu and Zn can also be observed, although their intensity is higher in sites with low contamination. In kidney extracts, the presence of a Cd-peak with Mr of 7 kDa (tentatively Cd-metallothionein) with high intensity under the action of contaminants was observed, but high biological responses are also proven in the protected area of the Park, which denotes a progressive increase of diffuse contamination.