Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 184(8): 2183-2200.e22, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33756110

RESUMEN

Antibodies are crucial to immune protection against SARS-CoV-2, with some in emergency use as therapeutics. Here, we identify 377 human monoclonal antibodies (mAbs) recognizing the virus spike and focus mainly on 80 that bind the receptor binding domain (RBD). We devise a competition data-driven method to map RBD binding sites. We find that although antibody binding sites are widely dispersed, neutralizing antibody binding is focused, with nearly all highly inhibitory mAbs (IC50 < 0.1 µg/mL) blocking receptor interaction, except for one that binds a unique epitope in the N-terminal domain. Many of these neutralizing mAbs use public V-genes and are close to germline. We dissect the structural basis of recognition for this large panel of antibodies through X-ray crystallography and cryoelectron microscopy of 19 Fab-antigen structures. We find novel binding modes for some potently inhibitory antibodies and demonstrate that strongly neutralizing mAbs protect, prophylactically or therapeutically, in animal models.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Sitios de Unión de Anticuerpos , Células CHO , Chlorocebus aethiops , Cricetulus , Epítopos , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , SARS-CoV-2/inmunología , Células Vero
2.
Biochem J ; 481(13): 883-901, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38884605

RESUMEN

Catalase is a major antioxidant enzyme located in plant peroxisomes that catalyzes the decomposition of H2O2. Based on our previous transcriptomic (RNA-Seq) and proteomic (iTRAQ) data at different stages of pepper (Capsicum annuum L.) fruit ripening and after exposure to nitric oxide (NO) enriched atmosphere, a broad analysis has allowed us to characterize the functioning of this enzyme. Three genes were identified, and their expression was differentially modulated during ripening and by NO gas treatment. A dissimilar behavior was observed in the protein expression of the encoded protein catalases (CaCat1-CaCat3). Total catalase activity was down-regulated by 50% in ripe (red) fruits concerning immature green fruits. This was corroborated by non-denaturing polyacrylamide gel electrophoresis, where only a single catalase isozyme was identified. In vitro analyses of the recombinant CaCat3 protein exposed to peroxynitrite (ONOO-) confirmed, by immunoblot assay, that catalase underwent a nitration process. Mass spectrometric analysis identified that Tyr348 and Tyr360 were nitrated by ONOO-, occurring near the active center of catalase. The data indicate the complex regulation at gene and protein levels of catalase during the ripening of pepper fruits, with activity significantly down-regulated in ripe fruits. Nitration seems to play a key role in this down-regulation, favoring an increase in H2O2 content during ripening. This pattern can be reversed by the exogenous NO application. While plant catalases are generally reported to be tetrameric, the analysis of the protein structure supports that pepper catalase has a favored quaternary homodimer nature. Taken together, data show that pepper catalase is down-regulated during fruit ripening, becoming a target of tyrosine nitration, which provokes its inhibition.


Asunto(s)
Capsicum , Catalasa , Frutas , Óxido Nítrico , Proteínas de Plantas , Capsicum/genética , Capsicum/crecimiento & desarrollo , Capsicum/enzimología , Capsicum/metabolismo , Catalasa/metabolismo , Catalasa/genética , Frutas/crecimiento & desarrollo , Frutas/genética , Frutas/metabolismo , Frutas/enzimología , Frutas/efectos de los fármacos , Óxido Nítrico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Ácido Peroxinitroso/metabolismo
4.
PLoS Pathog ; 17(2): e1009352, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33635919

RESUMEN

Serological and plasmablast responses and plasmablast-derived IgG monoclonal antibodies (MAbs) have been analysed in three COVID-19 patients with different clinical severities. Potent humoral responses were detected within 3 weeks of onset of illness in all patients and the serological titre was elicited soon after or concomitantly with peripheral plasmablast response. An average of 13.7% and 3.5% of plasmablast-derived MAbs were reactive with virus spike glycoprotein or nucleocapsid, respectively. A subset of anti-spike (10 of 32) antibodies cross-reacted with other betacoronaviruses tested and harboured extensive somatic mutations, indicative of an expansion of memory B cells upon SARS-CoV-2 infection. Fourteen of 32 anti-spike MAbs, including five anti-receptor-binding domain (RBD), three anti-non-RBD S1 and six anti-S2, neutralised wild-type SARS-CoV-2 in independent assays. Anti-RBD MAbs were further grouped into four cross-inhibiting clusters, of which six antibodies from three separate clusters blocked the binding of RBD to ACE2 and five were neutralising. All ACE2-blocking anti-RBD antibodies were isolated from two recovered patients with prolonged fever, which is compatible with substantial ACE2-blocking response in their sera. Finally, the identification of non-competing pairs of neutralising antibodies would offer potential templates for the development of prophylactic and therapeutic agents against SARS-CoV-2.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Adulto , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/genética , Células Productoras de Anticuerpos/inmunología , Sitios de Unión , Epítopos , Humanos , Inmunoglobulina G/inmunología , Nucleocápside/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
5.
EMBO Rep ; 22(8): e52447, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34142428

RESUMEN

Cyclic GMP-AMP (cGAMP) is an immunostimulatory molecule produced by cGAS that activates STING. cGAMP is an adjuvant when administered alongside antigens. cGAMP is also incorporated into enveloped virus particles during budding. Here, we investigate whether inclusion of cGAMP within viral vaccine vectors enhances their immunogenicity. We immunise mice with virus-like particles (VLPs) containing HIV-1 Gag and the vesicular stomatitis virus envelope glycoprotein G (VSV-G). cGAMP loading of VLPs augments CD4 and CD8 T-cell responses. It also increases VLP- and VSV-G-specific antibody titres in a STING-dependent manner and enhances virus neutralisation, accompanied by increased numbers of T follicular helper cells. Vaccination with cGAMP-loaded VLPs containing haemagglutinin induces high titres of influenza A virus neutralising antibodies and confers protection upon virus challenge. This requires cGAMP inclusion within VLPs and is achieved at markedly reduced cGAMP doses. Similarly, cGAMP loading of VLPs containing the SARS-CoV-2 Spike protein enhances Spike-specific antibody titres. cGAMP-loaded VLPs are thus an attractive platform for vaccination.


Asunto(s)
COVID-19 , Vacunas contra la Influenza , Vacunas de Partículas Similares a Virus , Animales , Humanos , Ratones , Nucleótidos Cíclicos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de Partículas Similares a Virus/genética
6.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175708

RESUMEN

Hydrogen sulfide (H2S) and nitric oxide (NO) are two relevant signal molecules that can affect protein function throughout post-translational modifications (PTMs) such as persulfidation, S-nitrosation, metal-nitrosylation, and nitration. Lipoxygenases (LOXs) are a group of non-heme iron enzymes involved in a wide range of plant physiological functions including seed germination, plant growth and development, and fruit ripening and senescence. Likewise, LOXs are also involved in the mechanisms of response to diverse environmental stresses. Using purified soybean (Glycine max L.) lipoxygenase type 1 (LOX 1) and nitrosocysteine (CysNO) and sodium hydrosulfide (NaHS) as NO and H2S donors, respectively, the present study reveals that both compounds negatively affect LOX activity, suggesting that S-nitrosation and persulfidation are involved. Mass spectrometric analysis of nitrated soybean LOX 1 using a peroxynitrite (ONOO-) donor enabled us to identify that, among the thirty-five tyrosine residues present in this enzyme, only Y214 was exclusively nitrated by ONOO-. The nitration of Y214 seems to affect its interaction with W500, a residue involved in the substrate binding site. The analysis of the structure 3PZW demonstrates the existence of several tunnels that directly communicate the surface of the protein with different internal cysteines, thus making feasible their potential persulfidation, especially C429 and C127. On the other hand, the CysNO molecule, which is hydrophilic and bulkier than H2S, can somehow be accommodated throughout the tunnel until it reaches C127, thus facilitating its nitrosation. Overall, a large number of potential persulfidation targets and the ease by which H2S can reach them through the diffuse tunneling network could be behind their efficient inhibition.


Asunto(s)
Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Óxido Nítrico/metabolismo , Glycine max/metabolismo , Lipooxigenasa , Proteínas , Nitratos/metabolismo , Receptores Depuradores de Clase E
7.
ScientificWorldJournal ; 2021: 9998924, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335116

RESUMEN

A systematic literature review of publications from 2000 to 2020 was carried out to identify research trends on adsorbent materials for the removal of caffeine from aqueous solutions. Publications were retrieved from three databases (Scopus, Web of Science, and Google Scholar). Words "adsorption AND caffeine" were examined into titles, abstracts, and keywords. A brief bibliometric analysis was performed with emphasis on the type of publication and of most cited articles. Materials for the removal of caffeine were classified according to the type of material into three main groups: organic, inorganic, and composites, each of them subdivided into different subgroups consistent with their origin or production. Tables resume for each subgroup of adsorbents the key information: specific surface area, dose, pH, maximum adsorption capacity, and isotherm models for the removal of caffeine. The highest adsorption capacities were achieved by organic adsorbents, specifically those with granular activated carbon (1961.3 mg/g) and grape stalk activated carbon (916.7 mg/g). Phenyl-phosphate-based porous organic polymer (301 mg/g), natural sandy loam sediment (221.2 mg/g), composites of MCM-48 encapsulated graphene oxide (153.8 mg/g), and organically modified clay (143.7 mg/g) showed adsorption capacities lower than those of activated carbons. In some activated carbons, a relation between the specific surface area (SSA) and the maximum adsorption capacity (Q max) was found.


Asunto(s)
Cafeína , Contaminantes Químicos del Agua , Purificación del Agua/métodos , Adsorción , Bibliometría , Cafeína/química , Contaminantes Químicos del Agua/química
8.
Epilepsy Behav ; 102: 106655, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31812902

RESUMEN

OBJECTIVE: Perampanel (PER) has been shown to be effective as an adjunctive therapy for controlling refractory focal-onset seizures (FOS). However, the information as early add-on for the treatment of FOS in the clinical practice is still scarce and must be further assessed. METHODS: An observational prospective study was conducted to evaluate the effectiveness of early add-on PER, assessed as 50% responders (seizure frequency reduced by at least 50% during the last 3 months as compared with baseline) rate at 6 and 12 months, in patients with FOS in the routine clinical practice of Spain. RESULTS: One hundred and thirteen patients (mean age: 40.3 years, 51.3% male) with FOS received PER as early add-on (1st add-on: 37.2% and 2nd: 62.8%) for a mean exposure of 11 months (mean PER dose: 6.3 mg/day at month 12). At 6 months, 50.4% and 20.4% of the patients were responders and seizure-free (respectively) relative to baseline (3 months prior to PER initiation), and at 12 months, 68.1% and 26.5% of the patients were responders and seizure-free (respectively), relative to baseline (3 months prior to PER initiation). The retention rate at 6 and 12 months was 83.2% and 80.5%, respectively. The percentage of seizure-free patients at 12 months was significantly (p = 0.033) higher when PER was added as first vs. second add-on. The number of concomitant antiepileptic drugs (AEDs) was significantly reduced from baseline to 6 and 12 months (p = 0.001). Treatment was simplified in 23.9% of patients at the end of the observation period. Drug-related adverse events (AEs), most mild or moderate, were reported in 30.1% of patients, with irritability (8%) and dizziness (7.1%) as the most frequent ones. CONCLUSIONS: This is the first observational, prospective study to evaluate efficacy and safety of early adjunctive treatment with PER in patients with focal epilepsy at 12 months. Perampanel demonstrated a good efficacy and safety profile when used at a median dose of 6 mg/day, regardless of the combination with other AEDs. Adverse events were mild or moderate, with dizziness being the most frequent one.


Asunto(s)
Anticonvulsivantes/administración & dosificación , Epilepsia/tratamiento farmacológico , Epilepsia/epidemiología , Piridonas/administración & dosificación , Convulsiones/tratamiento farmacológico , Convulsiones/epidemiología , Adulto , Anticonvulsivantes/efectos adversos , Mareo/inducido químicamente , Quimioterapia Combinada , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nitrilos , Estudios Prospectivos , Piridonas/efectos adversos , España/epidemiología , Resultado del Tratamiento , Adulto Joven
9.
J Anat ; 235(3): 468-480, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30793304

RESUMEN

The Zika virus (ZIKV) became a major worldwide public concern in 2015 due to the congenital syndrome which presents the highest risk during the first trimester of pregnancy and includes microcephaly and eye malformations. Several cellular, genetic and molecular studies have shown alterations in metabolic pathways, endoplasmic reticulum (ER) stress, immunity and dysregulation of RNA and energy metabolism both in vivo and in vitro. Here we summarise the main metabolic complications, with a particular focus on the possibility that brain energy metabolism is altered following ZIKV infection, contributing to developmental abnormalities. Brain energetic failure has been implicated in neurological conditions such as autism disorder and epilepsy, as well as in metabolic diseases with severe neurodevelopmental complications such as Glut-1 deficiency syndrome. Therefore, these energetic alterations are of wide-ranging interest as they might be directly implicated in congenital ZIKV syndrome. Data showing increased glycolysis during ZIKV infection, presumably required for viral replication, might support the idea that the virus can cause energetic stress in the developing brain cells. Consequences may include neuroinflammation, cell cycle dysregulation and cell death. Ketone bodies are non-glycolytic brain fuels that are produced during neonatal life, starvation or fasting, ingestion of high-fat low-carbohydrate diets, and following supplementation with ketone esters. We propose that dietary ketones might alter the course of the disease and could even provide some degree of prevention of ZIKV-associated abnormalities and potentially related neurological conditions characterised by brain glucose impairment.


Asunto(s)
Encéfalo/metabolismo , Infección por el Virus Zika/congénito , Animales , Encéfalo/embriología , Metabolismo Energético , Glucosa/metabolismo , Humanos , Infección por el Virus Zika/metabolismo
10.
Calcif Tissue Int ; 104(1): 42-49, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30209528

RESUMEN

Bone loss and vitamin D deficiency are common in HIV patients. However, bone health status in newly diagnosed HIV patients has not been thoroughly described. Our aim was to assess the bone mineral density (BMD), bone resorption and vitamin D status in newly diagnosed HIV patients. A prospective observational study in HIV newly diagnosed therapy-naive persons. Patients with secondary causes of osteoporosis were excluded. Bone densitometry (DXA), a bone resorption marker (CTx), 25-hydroxyvitamin D (25OHD), CD4 count and HIV viral load (VL) were done in 70 patients. Vitamin D results were compared with a group of healthy volunteers. All patients were men, mean age 31 years (19-50). Low BMD (Z score ≤ 2.0) was found in 13%, all of them in lumbar spine, and in only one patient also in femoral neck. Bone resorption was high in 16%. One out of four participants had low BMD or high bone resorption. Vitamin D deficiency (25OHD < 20 ng/mL) was found in 66%. Mean 25OHD in patients was significantly lower than in healthy volunteers (p = 0.04). No associations were found between BMD, CTx, 25OHD and VL or CD4 count. We hypothesize that HIV infection negatively affects bone health based on the results we found among newly diagnosed, therapy-naive, HIV-infected patients, without any known secondary causes of osteoporosis. Low BMD or high bone resorption, are significantly prevalent in these patients. HIV-infected patients had a higher prevalence of vitamin D deficiency than controls, which was not correlated with CD4 count or VL.


Asunto(s)
Densidad Ósea/fisiología , Infecciones por VIH/complicaciones , Osteoporosis/etiología , Vitamina D/metabolismo , Adulto , Resorción Ósea/metabolismo , Calcio/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osteoporosis/complicaciones , Estudios Prospectivos , Vitamina D/análogos & derivados , Deficiencia de Vitamina D/complicaciones , Adulto Joven
11.
Int J Mol Sci ; 20(22)2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31752329

RESUMEN

The detection of IgG aquaporin-4 antibodies in the serum of patients with Neuromyelitis optica (NMO) has dramatically improved the diagnosis of this disease and its distinction from multiple sclerosis. Recently, a group of patients have been described who have an NMO spectrum disorder (NMOsd) and who are seronegative for AQP4 antibodies but positive for IgG aquaporin-1 (AQP1) or myelin oligodendrocyte glycoprotein (MOG) antibodies. The purpose of this study was to determine whether AQP1 and MOG could be considered new biomarkers of this disease; and if point mutations in the gDNA of AQP4, AQP1 and MOG genes could be associated with the etiology of NMOsd. We evaluated the diagnostic capability of ELISA and cell-based assays (CBA), and analyzed their reliability, specificity, and sensitivity in detecting antibodies against these three proteins. The results showed that both assays can recognize these antigen proteins under appropriate conditions, but only anti-AQP4 antibodies, and not AQP1 or MOG, appears to be a clear biomarker for NMOsd. CBA is the best method for detecting these antibodies; and serum levels of AQP4 antibodies do not correlate with the progression of this disease. So far, the sequencing analysis has not revealed a genetic basis for the etiology of NMOsd, but a more extensive analysis is required before definitive conclusions can be drawn.


Asunto(s)
Anticuerpos/sangre , Acuaporina 1/genética , Acuaporina 4/genética , Glicoproteína Mielina-Oligodendrócito/genética , Neuromielitis Óptica/sangre , Neuromielitis Óptica/genética , Mutación Puntual/genética , Adulto , Biomarcadores/sangre , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad
12.
Nitric Oxide ; 81: 36-45, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30326260

RESUMEN

Like nitric oxide (NO), hydrogen sulfide (H2S) has been recognized as a new gasotransmitter which plays an important role as a signaling molecule in many physiological processes in higher plants. Although fruit ripening is a complex process associated with the metabolism of reactive oxygen species (ROS) and nitrogen oxygen species (RNS), little is known about the potential involvement of endogenous H2S. Using sweet pepper (Capsicum annuum L.) as a model non-climacteric fruit during the green and red ripening stages, we studied endogenous H2S content and cytosolic l-cysteine desulfhydrase (L-DES) activity which increased by 14% and 28%, respectively, in red pepper fruits. NADPH is a redox compound and key cofactor required for cell growth, proliferation and detoxification. We studied the NADPH-regenerating enzyme, NADP-isocitrate dehydrogenase (NADP-ICDH), whose activity decreased by 34% during ripening. To gain a better understanding of its potential regulation by H2S, we obtained a 50-75% ammonium sulfate-enriched protein fraction containing the NADP-ICDH protein; with the aid of in vitro assays in the presence of H2S, we observed that 2 and 10 mM NaHS used as H2S donors resulted in a decrease of up to 36% and 45%, respectively, in NADP-ICDH activity, which was unaffected by reduced glutathione (GSH). On the other hand, peroxynitrite (ONOO-), S-nitrosocyteine (CysNO) and DETA-NONOate, with the last two acting as NO donors, also inhibited NADP-ICDH activity. In silico analysis of the tertiary structure of sweet pepper NADP-ICDH activity (UniProtKB ID A0A2G2Y555) suggests that residues Cys133 and Tyr450 are the most likely potential targets for S-nitrosation and nitration, respectively. Taken together, the data reveal that the increase in the H2S production capacity of red fruits is due to higher L-DES activity during non-climacteric pepper fruit ripening. In vitro assays appear to show that H2S inhibits NADP-ICDH activity, thus suggesting that this enzyme may be regulated by persulfidation, as well as by S-nitrosation and nitration. NO and H2S may therefore regulate NADPH production and consequently cellular redox status during pepper fruit ripening.


Asunto(s)
Capsicum/fisiología , Sulfuro de Hidrógeno/metabolismo , Isocitrato Deshidrogenasa/química , Isocitrato Deshidrogenasa/metabolismo , Óxido Nítrico/metabolismo , Frutas/efectos de los fármacos , Frutas/fisiología , Regulación de la Expresión Génica de las Plantas , Sulfuro de Hidrógeno/farmacología , Isocitrato Deshidrogenasa/genética , Nitrosación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación hacia Arriba
13.
J Exp Bot ; 66(19): 5983-96, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26116026

RESUMEN

The ascorbate-glutathione cycle is a metabolic pathway that detoxifies hydrogen peroxide and involves enzymatic and non-enzymatic antioxidants. Proteomic studies have shown that some enzymes in this cycle such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR) are potential targets for post-translational modifications (PMTs) mediated by nitric oxide-derived molecules. Using purified recombinant pea peroxisomal MDAR and cytosolic and chloroplastic GR enzymes produced in Escherichia coli, the effects of peroxynitrite (ONOO(-)) and S-nitrosoglutathione (GSNO) which are known to mediate protein nitration and S-nitrosylation processes, respectively, were analysed. Although ONOO(-) and GSNO inhibit peroxisomal MDAR activity, chloroplastic and cytosolic GR were not affected by these molecules. Mass spectrometric analysis of the nitrated MDAR revealed that Tyr213, Try292, and Tyr345 were exclusively nitrated to 3-nitrotyrosine by ONOO(-). The location of these residues in the structure of pea peroxisomal MDAR reveals that Tyr345 is found at 3.3 Å of His313 which is involved in the NADP-binding site. Site-directed mutagenesis confirmed Tyr345 as the primary site of nitration responsible for the inhibition of MDAR activity by ONOO(-). These results provide new insights into the molecular regulation of MDAR which is deactivated by nitration and S-nitrosylation. However, GR was not affected by ONOO(-) or GSNO, suggesting the existence of a mechanism to conserve redox status by maintaining the level of reduced GSH. Under a nitro-oxidative stress induced by salinity (150mM NaCl), MDAR expression (mRNA, protein, and enzyme activity levels) was increased, probably to compensate the inhibitory effects of S-nitrosylation and nitration on the enzyme. The present data show the modulation of the antioxidative response of key enzymes in the ascorbate-glutathione cycle by nitric oxide (NO)-PTMs, thus indicating the close involvement of NO and reactive oxygen species metabolism in antioxidant defence against nitro-oxidative stress situations in plants.


Asunto(s)
Glutatión Reductasa/genética , NADH NADPH Oxidorreductasas/genética , Óxido Nítrico/metabolismo , Pisum sativum/genética , Proteínas de Plantas/genética , Procesamiento Proteico-Postraduccional , Cloroplastos/enzimología , Citosol/enzimología , Glutatión Reductasa/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Pisum sativum/enzimología , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ADN
15.
Biochim Biophys Acta ; 1830(11): 4981-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23860243

RESUMEN

BACKGROUND: Protein tyrosine nitration is a post-translational modification (PTM) mediated by nitric oxide-derived molecules. Peroxisomes are oxidative organelles in which the presence of nitric oxide (NO) has been reported. METHODS: We studied peroxisomal nitroproteome of pea leaves by high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS) and proteomic approaches. RESULTS: Proteomic analysis of peroxisomes from pea leaves detected a total of four nitro-tyrosine immunopositive proteins by using an antibody against nitrotyrosine. One of these proteins was found to be the NADH-dependent hydroxypyruvate reductase (HPR). The in vitro nitration of peroxisomal samples caused a 65% inhibition of HPR activity. Analysis of recombinant peroxisomal NADH-dependent HPR1 activity from Arabidopsis in the presence of H2O2, NO, GSH and peroxynitrite showed that the ONOO(-) molecule caused the highest inhibition of activity (51% at 5mM SIN-1), with 5mM H2O2 having no inhibitory effect. Mass spectrometric analysis of the nitrated recombinant HPR1 enabled us to determine that, among the eleven tyrosine present in this enzyme, only Tyr-97, Tyr-108 and Tyr-198 were exclusively nitrated to 3-nitrotyrosine by peroxynitrite. Site-directed mutagenesis confirmed Tyr198 as the primary site of nitration responsible for the inhibition on the enzymatic activity by peroxynitrite. CONCLUSION: These findings suggest that peroxisomal HPR is a target of peroxynitrite which provokes a loss of function. GENERAL SIGNIFICANCE: This is the first report demonstrating the peroxisomal NADH-dependent HPR activity involved in the photorespiration pathway is regulated by tyrosine nitration, indicating that peroxisomal NO metabolism may contribute to the regulation of physiological processes under no-stress conditions.


Asunto(s)
Hidroxipiruvato Reductasa/antagonistas & inhibidores , Peroxisomas/metabolismo , Tirosina/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Evolución Molecular , Glutatión/farmacología , Peróxido de Hidrógeno/farmacología , Hidroxipiruvato Reductasa/genética , Hidroxipiruvato Reductasa/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Nitratos/metabolismo , Oxidación-Reducción/efectos de los fármacos , Pisum sativum/enzimología , Pisum sativum/genética , Pisum sativum/metabolismo , Peroxisomas/efectos de los fármacos , Peroxisomas/genética , Ácido Peroxinitroso/genética , Ácido Peroxinitroso/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteoma/efectos de los fármacos , Proteoma/genética , Proteoma/metabolismo , Tirosina/análogos & derivados , Tirosina/genética
16.
J Exp Bot ; 65(2): 527-38, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24288182

RESUMEN

Post-translational modifications (PTMs) mediated by nitric oxide (NO)-derived molecules have become a new area of research, as they can modulate the function of target proteins. Proteomic data have shown that ascorbate peroxidase (APX) is one of the potential targets of PTMs mediated by NO-derived molecules. Using recombinant pea cytosolic APX, the impact of peroxynitrite (ONOO-) and S-nitrosoglutathione (GSNO), which are known to mediate protein nitration and S-nitrosylation processes, respectively, was analysed. While peroxynitrite inhibits APX activity, GSNO enhances its enzymatic activity. Mass spectrometric analysis of the nitrated APX enabled the determination that Tyr5 and Tyr235 were exclusively nitrated to 3-nitrotyrosine by peroxynitrite. Residue Cys32 was identified by the biotin switch method as S-nitrosylated. The location of these residues on the structure of pea APX reveals that Tyr235 is found at the bottom of the pocket where the haem group is enclosed, whereas Cys32 is at the ascorbate binding site. Pea plants grown under saline (150 mM NaCl) stress showed an enhancement of both APX activity and S-nitrosylated APX, as well as an increase of H2O2, NO, and S-nitrosothiol (SNO) content that can justify the induction of the APX activity. The results provide new insight into the molecular mechanism of the regulation of APX which can be both inactivated by irreversible nitration and activated by reversible S-nitrosylation.


Asunto(s)
Ascorbato Peroxidasas/metabolismo , Citosol/enzimología , Pisum sativum/enzimología , Tirosina/metabolismo , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Nitrosación/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Pisum sativum/efectos de los fármacos , Pisum sativum/fisiología , Péptidos/química , Ácido Peroxinitroso/farmacología , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Multimerización de Proteína/efectos de los fármacos , Proteínas Recombinantes/metabolismo , S-Nitrosoglutatión/farmacología , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos
17.
Antiviral Res ; 228: 105933, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38851593

RESUMEN

The underlying threat of new Zika virus (ZIKV) outbreaks remains, as no vaccines or therapies have yet been developed. In vitro research has shown that glycolysis is a key factor to enable sustained ZIKV replication in neuroprogenitors. However, neither in vivo nor clinical investigation of glycolytic modulators as potential therapeutics for ZIKV-related fetal abnormalities has been conducted. Accordingly, we tested the therapeutic potential of metabolic modulators in relevant in vitro systems comprising two pools of neuroprogenitors (NPCs), which resemble early and late stages of pregnancy. Effective doses of metabolic modulators [3.0 µM] dimethyl fumarate (DMF), [3.2 mM] dichloroacetate (DCA), and [6.3 µM] VER-246608 were determined for these cells by their effect on lactate release, pyruvate dehydrogenase (PDH) activity and cell survival. The drugs were used in a 24h pre-treatment and kept throughout ZIKV infection of NPCs. Drug effects and ZIKV replication were assessed at 24- and 56-h post-infection. In early NPCs treated with DMF, DCA and VER-246608, there was a significant reduction in the extracellular release of ZIKV potentially by PDH-mediated increased mitochondrial oxidation of glucose. Out of the three drugs, only DCA was observed to reduce viral replication in late NPCs treated with DCA. Altogether, our findings suggest that reduction of anaerobic glycolysis could be of therapeutic potential against ZIKV-related fetal abnormalities and that clinical translation should consider the use of specific glycolytic modulators over different trimesters.

18.
Nat Nanotechnol ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710880

RESUMEN

Defending against future pandemics requires vaccine platforms that protect across a range of related pathogens. Nanoscale patterning can be used to address this issue. Here, we produce quartets of linked receptor-binding domains (RBDs) from a panel of SARS-like betacoronaviruses, coupled to a computationally designed nanocage through SpyTag/SpyCatcher links. These Quartet Nanocages, possessing a branched morphology, induce a high level of neutralizing antibodies against several different coronaviruses, including against viruses not represented in the vaccine. Equivalent antibody responses are raised to RBDs close to the nanocage or at the tips of the nanoparticle's branches. In animals primed with SARS-CoV-2 Spike, boost immunizations with Quartet Nanocages increase the strength and breadth of an otherwise narrow immune response. A Quartet Nanocage including the Omicron XBB.1.5 'Kraken' RBD induced antibodies with binding to a broad range of sarbecoviruses, as well as neutralizing activity against this variant of concern. Quartet nanocages are a nanomedicine approach with potential to confer heterotypic protection against emergent zoonotic pathogens and facilitate proactive pandemic protection.

19.
Nitric Oxide ; 29: 30-3, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23266784

RESUMEN

Protein tyrosine nitration is a post-translational modification (PTM) mediated by reactive nitrogen species (RNS) and it is a new area of research in higher plants. Previously, it was demonstrated that the exposition of sunflower (Helianthus annuus L.) seedlings to high temperature (HT) caused both oxidative and nitrosative stress. The nitroproteome analysis under this stress condition showed the induction of 13 tyrosine-nitrated proteins being the carbonic anhydrase (CA) one of these proteins. The analysis of CA activity under high temperature showed that this stress inhibited the CA activity by a 43%. To evaluate the effect of nitration on the CA activity in sunflower it was used 3-morpholinosydnonimine (SIN-1) (peroxynitrite donor) as the nitrating agent. Thus the CA activity was inhibited by 41%. In silico analysis of the pea CA protein sequence suggests that Tyr(205) is the most likely potential target for nitration.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Helianthus/enzimología , Óxido Nítrico/metabolismo , Temperatura , Tirosina/metabolismo , Activación Enzimática/efectos de los fármacos , Modelos Moleculares , Molsidomina/análogos & derivados , Molsidomina/farmacología , Procesamiento Proteico-Postraduccional , Estrés Fisiológico , Tirosina/química
20.
Biol Open ; 12(4)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37093064

RESUMEN

Cortical development consists of an orchestrated process in which progenitor cells exhibit distinct fate restrictions regulated by time-dependent activation of energetic pathways. Thus, the hijacking of cellular metabolism by Zika virus (ZIKV) to support its replication may contribute to damage in the developing fetal brain. Here, we showed that ZIKV replicates differently in two glycolytically distinct pools of cortical progenitors derived from human induced pluripotent stem cells (hiPSCs), which resemble the metabolic patterns of quiescence (early hi-NPCs) and immature brain cells (late hi-NPCs) in the forebrain. This differential replication alters the transcription of metabolic genes in both pools of cortical progenitors but solely upregulates the glycolytic capacity of early hi-NPCs. Analysis using Imagestream® revealed that, during early stages of ZIKV replication, in early hi-NPCs there is an increase in lipid droplet abundance and size. This stage of ZIKV replication significantly reduced the mitochondrial distribution in both early and late hi-NPCs. During later stages of ZIKV replication, late hi-NPCs show reduced mitochondrial size and abundance. The finding that there are alterations of cellular metabolism during ZIKV infection which are specific to pools of cortical progenitors at different stages of maturation may help to explain the differences in brain damage over each trimester.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Infección por el Virus Zika , Virus Zika , Embarazo , Femenino , Humanos , Virus Zika/metabolismo , Células-Madre Neurales/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Encéfalo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA