Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(48): e2209149119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36413498

RESUMEN

Intravacuolar pathogens need to gradually expand their surrounding vacuole to accommodate the growing number of bacterial offspring during intracellular replication. Here we found that Legionella pneumophila controls vacuole expansion by fine-tuning the generation of lysophospholipids within the vacuolar membrane. Upon allosteric activation by binding to host ubiquitin, the type IVB (Dot/Icm) effector VpdC converts phospholipids into lysophospholipids which, at moderate concentrations, are known to promote membrane fusion but block it at elevated levels by generating excessive positive membrane curvature. Consequently, L. pneumophila overproducing VpdC were prevented from adequately expanding their surrounding membrane, trapping the replicating bacteria within spatially confined vacuoles and reducing their capability to proliferate intracellularly. Quantitative lipidomics confirmed a VpdC-dependent increase in several types of lysophospholipids during infection, and VpdC production in transiently transfected cells caused tubulation of organelle membranes as well as mitochondria fragmentation, processes that can be phenocopied by supplying cells with exogenous lysophospholipids. Together, these results demonstrate an important role for bacterial phospholipases in vacuolar expansion.


Asunto(s)
Legionella , Enfermedad de los Legionarios , Humanos , Legionella/metabolismo , Vacuolas/metabolismo , Enfermedad de los Legionarios/microbiología , Fosfolipasas/metabolismo , Ubiquitina/metabolismo , Proteínas Bacterianas/metabolismo , Lisofosfolípidos/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(20): 10865-10875, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32366666

RESUMEN

Cell-to-cell transmission of misfolding-prone α-synuclein (α-Syn) has emerged as a key pathological event in Parkinson's disease. This process is initiated when α-Syn-bearing fibrils enter cells via clathrin-mediated endocytosis, but the underlying mechanisms are unclear. Using a CRISPR-mediated knockout screen, we identify SLC35B2 and myosin-7B (MYO7B) as critical endocytosis regulators for α-Syn preformed fibrils (PFFs). We show that SLC35B2, as a key regulator of heparan sulfate proteoglycan (HSPG) biosynthesis, is essential for recruiting α-Syn PFFs to the cell surface because this process is mediated by interactions between negatively charged sugar moieties of HSPGs and clustered K-T-K motifs in α-Syn PFFs. By contrast, MYO7B regulates α-Syn PFF cell entry by maintaining a plasma membrane-associated actin network that controls membrane dynamics. Without MYO7B or actin filaments, many clathrin-coated pits fail to be severed from the membrane, causing accumulation of large clathrin-containing "scars" on the cell surface. Intriguingly, the requirement for MYO7B in endocytosis is restricted to α-Syn PFFs and other polycation-bearing cargos that enter cells via HSPGs. Thus, our study not only defines regulatory factors for α-Syn PFF endocytosis, but also reveals a previously unknown endocytosis mechanism for HSPG-binding cargos in general, which requires forces generated by MYO7B and actin filaments.


Asunto(s)
Endocitosis/fisiología , Miosinas/química , Miosinas/metabolismo , Polielectrolitos/metabolismo , alfa-Sinucleína/metabolismo , Línea Celular , Clatrina/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Modelos Moleculares , Enfermedad de Parkinson/metabolismo , Conformación Proteica , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
3.
PLoS Biol ; 17(5): e3000279, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31100061

RESUMEN

We report the development and characterization of a method, named reversible association with motor proteins (RAMP), for manipulation of organelle positioning within the cytoplasm. RAMP consists of coexpressing in cultured cells (i) an organellar protein fused to the streptavidin-binding peptide (SBP) and (ii) motor, neck, and coiled-coil domains from a plus-end-directed or minus-end-directed kinesin fused to streptavidin. The SBP-streptavidin interaction drives accumulation of organelles at the plus or minus end of microtubules, respectively. Importantly, competition of the streptavidin-SBP interaction by the addition of biotin to the culture medium rapidly dissociates the motor construct from the organelle, allowing restoration of normal patterns of organelle transport and distribution. A distinctive feature of this method is that organelles initially accumulate at either end of the microtubule network in the initial state and are subsequently released from this accumulation, allowing analyses of the movement of a synchronized population of organelles by endogenous motors.


Asunto(s)
Técnicas Citológicas/métodos , Proteínas Motoras Moleculares/metabolismo , Orgánulos/metabolismo , Estreptavidina/metabolismo , Axones/metabolismo , Axones/ultraestructura , Transporte Biológico , Biotina/metabolismo , Dendritas/metabolismo , Dendritas/ultraestructura , Células HeLa , Humanos , Orgánulos/ultraestructura , Reproducibilidad de los Resultados
4.
Proc Natl Acad Sci U S A ; 115(43): E10099-E10108, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30287488

RESUMEN

Type I collagen is the main component of bone matrix and other connective tissues. Rerouting of its procollagen precursor to a degradative pathway is crucial for osteoblast survival in pathologies involving excessive intracellular buildup of procollagen that is improperly folded and/or trafficked. What cellular mechanisms underlie this rerouting remains unclear. To study these mechanisms, we employed live-cell imaging and correlative light and electron microscopy (CLEM) to examine procollagen trafficking both in wild-type mouse osteoblasts and osteoblasts expressing a bone pathology-causing mutant procollagen. We found that although most procollagen molecules successfully trafficked through the secretory pathway in these cells, a subpopulation did not. The latter molecules appeared in numerous dispersed puncta colocalizing with COPII subunits, autophagy markers and ubiquitin machinery, with more puncta seen in mutant procollagen-expressing cells. Blocking endoplasmic reticulum exit site (ERES) formation suppressed the number of these puncta, suggesting they formed after procollagen entry into ERESs. The punctate structures containing procollagen, COPII, and autophagic markers did not move toward the Golgi but instead were relatively immobile. They appeared to be quickly engulfed by nearby lysosomes through a bafilomycin-insensitive pathway. CLEM and fluorescence recovery after photobleaching experiments suggested engulfment occurred through a noncanonical form of autophagy resembling microautophagy of ERESs. Overall, our findings reveal that a subset of procollagen molecules is directed toward lysosomal degradation through an autophagic pathway originating at ERESs, providing a mechanism to remove excess procollagen from cells.


Asunto(s)
Autofagia/fisiología , Retículo Endoplásmico/metabolismo , Procolágeno/metabolismo , Células 3T3 , Animales , Línea Celular , Colágeno Tipo I/metabolismo , Aparato de Golgi/metabolismo , Lisosomas/metabolismo , Ratones , Osteoblastos/metabolismo , Transporte de Proteínas/fisiología
5.
PLoS Genet ; 14(4): e1007363, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29698489

RESUMEN

The hereditary spastic paraplegias (HSP) are a clinically and genetically heterogeneous group of disorders characterized by progressive lower limb spasticity. Mutations in subunits of the heterotetrameric (ε-ß4-µ4-σ4) adaptor protein 4 (AP-4) complex cause an autosomal recessive form of complicated HSP referred to as "AP-4 deficiency syndrome". In addition to lower limb spasticity, this syndrome features intellectual disability, microcephaly, seizures, thin corpus callosum and upper limb spasticity. The pathogenetic mechanism, however, remains poorly understood. Here we report the characterization of a knockout (KO) mouse for the AP4E1 gene encoding the ε subunit of AP-4. We find that AP-4 ε KO mice exhibit a range of neurological phenotypes, including hindlimb clasping, decreased motor coordination and weak grip strength. In addition, AP-4 ε KO mice display a thin corpus callosum and axonal swellings in various areas of the brain and spinal cord. Immunohistochemical analyses show that the transmembrane autophagy-related protein 9A (ATG9A) is more concentrated in the trans-Golgi network (TGN) and depleted from the peripheral cytoplasm both in skin fibroblasts from patients with mutations in the µ4 subunit of AP-4 and in various neuronal types in AP-4 ε KO mice. ATG9A mislocalization is associated with increased tendency to accumulate mutant huntingtin (HTT) aggregates in the axons of AP-4 ε KO neurons. These findings indicate that the AP-4 ε KO mouse is a suitable animal model for AP-4 deficiency syndrome, and that defective mobilization of ATG9A from the TGN and impaired autophagic degradation of protein aggregates might contribute to neuroaxonal dystrophy in this disorder.


Asunto(s)
Complejo 4 de Proteína Adaptadora/deficiencia , Complejo 4 de Proteína Adaptadora/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de la Membrana/metabolismo , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Complejo 4 de Proteína Adaptadora/química , Subunidades del Complejo de Proteínas Adaptadoras/química , Subunidades del Complejo de Proteínas Adaptadoras/deficiencia , Subunidades del Complejo de Proteínas Adaptadoras/genética , Animales , Axones/metabolismo , Conducta Animal/fisiología , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Neuronas/metabolismo , Agregado de Proteínas/genética , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Receptores de Glutamato/metabolismo , Paraplejía Espástica Hereditaria/patología , Médula Espinal/metabolismo , Médula Espinal/patología , Red trans-Golgi/metabolismo
6.
J Biol Chem ; 293(21): 8297-8311, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29523684

RESUMEN

Iron-sulfur (Fe-S) clusters are ancient cofactors in cells and participate in diverse biochemical functions, including electron transfer and enzymatic catalysis. Although cell lines derived from individuals carrying mutations in the Fe-S cluster biogenesis pathway or siRNA-mediated knockdown of the Fe-S assembly components provide excellent models for investigating Fe-S cluster formation in mammalian cells, these experimental strategies focus on the consequences of prolonged impairment of Fe-S assembly. Here, we constructed and expressed dominant-negative variants of the primary Fe-S biogenesis scaffold protein iron-sulfur cluster assembly enzyme 2 (ISCU2) in human HEK293 cells. This approach enabled us to study the early metabolic reprogramming associated with loss of Fe-S-containing proteins in several major cellular compartments. Using multiple metabolomics platforms, we observed a ∼12-fold increase in intracellular citrate content in Fe-S-deficient cells, a surge that was due to loss of aconitase activity. The excess citrate was generated from glucose-derived acetyl-CoA, and global analysis of cellular lipids revealed that fatty acid biosynthesis increased markedly relative to cellular proliferation rates in Fe-S-deficient cells. We also observed intracellular lipid droplet accumulation in both acutely Fe-S-deficient cells and iron-starved cells. We conclude that deficient Fe-S biogenesis and acute iron deficiency rapidly increase cellular citrate concentrations, leading to fatty acid synthesis and cytosolic lipid droplet formation. Our findings uncover a potential cause of cellular steatosis in nonadipose tissues.


Asunto(s)
Reprogramación Celular , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Gotas Lipídicas/metabolismo , Mitocondrias/metabolismo , Azufre/metabolismo , Aconitato Hidratasa/metabolismo , Metabolismo Energético , Células HEK293 , Humanos , Redes y Vías Metabólicas
7.
PLoS Genet ; 12(5): e1006036, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27166823

RESUMEN

TORC1 is a master regulator of metabolism in eukaryotes that responds to multiple upstream signaling pathways. The GATOR complex is a newly defined upstream regulator of TORC1 that contains two sub-complexes, GATOR1, which inhibits TORC1 activity in response to amino acid starvation and GATOR2, which opposes the activity of GATOR1. While the GATOR1 complex has been implicated in a wide array of human pathologies including cancer and hereditary forms of epilepsy, the in vivo relevance of the GATOR2 complex remains poorly understood in metazoans. Here we define the in vivo role of the GATOR2 component Wdr24 in Drosophila. Using a combination of genetic, biochemical, and cell biological techniques we demonstrate that Wdr24 has both TORC1 dependent and independent functions in the regulation of cellular metabolism. Through the characterization of a null allele, we show that Wdr24 is a critical effector of the GATOR2 complex that promotes the robust activation of TORC1 and cellular growth in a broad array of Drosophila tissues. Additionally, epistasis analysis between wdr24 and genes that encode components of the GATOR1 complex revealed that Wdr24 has a second critical function, the TORC1 independent regulation of lysosome dynamics and autophagic flux. Notably, we find that two additional members of the GATOR2 complex, Mio and Seh1, also have a TORC1 independent role in the regulation of lysosome function. These findings represent a surprising and previously unrecognized function of GATOR2 complex components in the regulation of lysosomes. Consistent with our findings in Drosophila, through the characterization of a wdr24-/- knockout HeLa cell line we determined that Wdr24 promotes lysosome acidification and autophagic flux in mammalian cells. Taken together our data support the model that Wdr24 is a key effector of the GATOR2 complex, required for both TORC1 activation and the TORC1 independent regulation of lysosomes.


Asunto(s)
Proteínas de Drosophila/genética , Lisosomas/genética , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas/genética , Serina-Treonina Quinasas TOR/genética , Animales , Proteínas de Ciclo Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Epistasis Genética , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
8.
Hepatology ; 64(4): 1317-29, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27396550

RESUMEN

UNLABELLED: Liver kinase B1 (LKB1) and its downstream effector AMP-activated protein kinase (AMPK) play critical roles in polarity establishment by regulating membrane trafficking and energy metabolism. In collagen sandwich-cultured hepatocytes, loss of LKB1 or AMPK impaired apical ABCB11 (Bsep) trafficking and bile canalicular formation. In the present study, we used liver-specific (albumin-Cre) LKB1 knockout mice (LKB1(-/-) ) to investigate the role of LKB1 in the maintenance of functional tight junction (TJ) in vivo. Transmission electron microscopy examination revealed that hepatocyte apical membrane with microvilli substantially extended into the basolateral domain of LKB1(-/-) livers. Immunofluorescence studies revealed that loss of LKB1 led to longer and wider canalicular structures correlating with mislocalization of the junctional protein, cingulin. To test junctional function, we used intravital microscopy to quantify the transport kinetics of 6-carboxyfluorescein diacetate (6-CFDA), which is processed in hepatocytes into its fluorescent derivative 6-carboxyfluorescein (6-CF) and secreted into the canaliculi. In LKB1(-/-) mice, 6-CF remained largely in hepatocytes, canalicular secretion was delayed, and 6-CF appeared in the blood. To test whether 6-CF was transported through permeable TJ, we intravenously injected low molecular weight (3 kDa) dextran in combination with 6-CFDA. In wild-type mice, 3 kDa dextran remained in the vasculature, whereas it rapidly appeared in the abnormal bile canaliculi in LKB1(-/-) mice, confirming that junctional disruption resulted in paracellular exchange between the blood stream and the bile canaliculus. CONCLUSION: LKB1 plays a critical role in regulating the maintenance of TJ and paracellular permeability, which may explain how various drugs, chemicals, and metabolic states that inhibit the LKB1/AMPK pathway result in cholestasis. (Hepatology 2016;64:1317-1329).


Asunto(s)
Hepatocitos/fisiología , Hepatocitos/ultraestructura , Proteínas Serina-Treonina Quinasas/fisiología , Uniones Estrechas/fisiología , Uniones Estrechas/ultraestructura , Proteínas Quinasas Activadas por AMP , Animales , Femenino , Masculino , Ratones , Ratones Noqueados
9.
Proc Natl Acad Sci U S A ; 111(52): E5670-7, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512509

RESUMEN

In single-cell eukaryotes the pathways that monitor nutrient availability are central to initiating the meiotic program and gametogenesis. In Saccharomyces cerevisiae an essential step in the transition to the meiotic cycle is the down-regulation of the nutrient-sensitive target of rapamycin complex 1 (TORC1) by the increased minichromosome loss 1/ GTPase-activating proteins toward Rags 1 (Iml1/GATOR1) complex in response to amino acid starvation. How metabolic inputs influence early meiotic progression and gametogenesis remains poorly understood in metazoans. Here we define opposing functions for the TORC1 regulatory complexes Iml1/GATOR1 and GATOR2 during Drosophila oogenesis. We demonstrate that, as is observed in yeast, the Iml1/GATOR1 complex inhibits TORC1 activity to slow cellular metabolism and drive the mitotic/meiotic transition in developing ovarian cysts. In iml1 germline depletions, ovarian cysts undergo an extra mitotic division before meiotic entry. The TORC1 inhibitor rapamycin can suppress this extra mitotic division. Thus, high TORC1 activity delays the mitotic/meiotic transition. Conversely, mutations in Tor, which encodes the catalytic subunit of the TORC1 complex, result in premature meiotic entry. Later in oogenesis, the GATOR2 components Mio and Seh1 are required to oppose Iml1/GATOR1 activity to prevent the constitutive inhibition of TORC1 and a block to oocyte growth and development. To our knowledge, these studies represent the first examination of the regulatory relationship between the Iml1/GATOR1 and GATOR2 complexes within the context of a multicellular organism. Our data imply that the central role of the Iml1/GATOR1 complex in the regulation of TORC1 activity in the early meiotic cycle has been conserved from single cell to multicellular organisms.


Asunto(s)
Proteínas de Drosophila/metabolismo , Meiosis/fisiología , Oocitos/metabolismo , Oogénesis/fisiología , Factores de Transcripción/metabolismo , Animales , Antibacterianos/farmacología , Proteínas de Ciclo Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Meiosis/efectos de los fármacos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oocitos/citología , Oogénesis/efectos de los fármacos , Sirolimus/farmacología , Factores de Transcripción/genética
10.
Proc Natl Acad Sci U S A ; 110(18): 7288-93, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23589864

RESUMEN

Cell polarization requires increased cellular energy and metabolic output, but how these energetic demands are met by polarizing cells is unclear. To address these issues, we investigated the roles of mitochondrial bioenergetics and autophagy during cell polarization of hepatocytes cultured in a collagen sandwich system. We found that as the hepatocytes begin to polarize, they use oxidative phosphorylation to raise their ATP levels, and this energy production is required for polarization. After the cells are polarized, the hepatocytes shift to become more dependent on glycolysis to produce ATP. Along with this central reliance on oxidative phosphorylation as the main source of ATP production in polarizing cultures, several other metabolic processes are reprogrammed during the time course of polarization. As the cells polarize, mitochondria elongate and mitochondrial membrane potential increases. In addition, lipid droplet abundance decreases over time. These findings suggest that polarizing cells are reliant on fatty acid oxidation, which is supported by pharmacologic inhibition of ß-oxidation by etomoxir. Finally, autophagy is up-regulated during cell polarization, with inhibition of autophagy retarding cell polarization. Taken together, our results describe a metabolic shift involving a number of coordinated metabolic pathways that ultimately serve to increase energy production during cell polarization.


Asunto(s)
Autofagia , Hepatocitos/citología , Hepatocitos/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/metabolismo , Animales , Polaridad Celular , Metabolismo Energético , Ácidos Grasos/metabolismo , Glucólisis , Hepatocitos/ultraestructura , Lípidos/química , Potencial de la Membrana Mitocondrial , Mitocondrias/ultraestructura , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Ratas , Regulación hacia Arriba
11.
Cell Rep ; 43(4): 114033, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38568811

RESUMEN

Small GTPases of the Ras subfamily are best known for their role as proto-oncoproteins, while their function during microbial infection has remained elusive. Here, we show that Legionella pneumophila hijacks the small GTPase NRas to the Legionella-containing vacuole (LCV) surface. A CRISPR interference screen identifies a single L. pneumophila effector, DenR (Lpg1909), required for this process. Recruitment is specific for NRas, while its homologs KRas and HRas are excluded from LCVs. The C-terminal hypervariable tail of NRas is sufficient for recruitment, and interference with either NRas farnesylation or S-acylation sites abrogates recruitment. Intriguingly, we detect markers of active NRas signaling on the LCV, suggesting it acts as a signaling platform. Subsequent phosphoproteomics analyses show that DenR rewires the host NRas signaling landscape, including dampening of the canonical mitogen-activated protein kinase pathway. These results provide evidence for L. pneumophila targeting NRas and suggest a link between NRas GTPase signaling and microbial infection.


Asunto(s)
Proteínas Bacterianas , GTP Fosfohidrolasas , Legionella pneumophila , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidad , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , GTP Fosfohidrolasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Regulación hacia Abajo , Células HEK293 , Enfermedad de los Legionarios/microbiología , Enfermedad de los Legionarios/metabolismo , Vacuolas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética
12.
Nat Neurosci ; 27(6): 1087-1102, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38600167

RESUMEN

In neurons, RNA granules are transported along the axon for local translation away from the soma. Recent studies indicate that some of this transport involves hitchhiking of RNA granules on lysosome-related vesicles. In the present study, we leveraged the ability to prevent transport of these vesicles into the axon by knockout of the lysosome-kinesin adaptor BLOC-one-related complex (BORC) to identify a subset of axonal mRNAs that depend on lysosome-related vesicles for transport. We found that BORC knockout causes depletion of a large group of axonal mRNAs mainly encoding ribosomal and mitochondrial/oxidative phosphorylation proteins. This depletion results in mitochondrial defects and eventually leads to axonal degeneration in human induced pluripotent stem cell (iPSC)-derived and mouse neurons. Pathway analyses of the depleted mRNAs revealed a mechanistic connection of BORC deficiency with common neurodegenerative disorders. These results demonstrate that mRNA transport on lysosome-related vesicles is critical for the maintenance of axonal homeostasis and that its failure causes axonal degeneration.


Asunto(s)
Axones , Homeostasis , Lisosomas , Mitocondrias , ARN Mensajero , Animales , Mitocondrias/metabolismo , Lisosomas/metabolismo , Axones/metabolismo , Ratones , ARN Mensajero/metabolismo , Homeostasis/fisiología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Degeneración Nerviosa/genética , Transporte Axonal/fisiología , Ratones Noqueados , Neuronas/metabolismo , Transporte de ARN
13.
J Cell Biol ; 222(6)2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37213076

RESUMEN

Exosomes are small vesicles that are secreted from cells to dispose of undegraded materials and mediate intercellular communication. A major source of exosomes is intraluminal vesicles within multivesicular endosomes that undergo exocytic fusion with the plasma membrane. An alternative fate of multivesicular endosomes is fusion with lysosomes, resulting in degradation of the intraluminal vesicles. The factors that determine whether multivesicular endosomes fuse with the plasma membrane or with lysosomes are unknown. In this study, we show that impairment of endolysosomal fusion by disruption of a pathway involving the BLOC-one-related complex (BORC), the small GTPase ARL8, and the tethering factor HOPS increases exosome secretion by preventing the delivery of intraluminal vesicles to lysosomes. These findings demonstrate that endolysosomal fusion is a critical determinant of the amount of exosome secretion and suggest that suppression of the BORC-ARL8-HOPS pathway could be used to boost exosome yields in biotechnology applications.


Asunto(s)
Endosomas , Exosomas , Lisosomas , Membrana Celular/metabolismo , Endosomas/metabolismo , Exosomas/metabolismo , Lisosomas/metabolismo , Cuerpos Multivesiculares/metabolismo , Factores de Ribosilacion-ADP/metabolismo , Proteínas de la Membrana/metabolismo
14.
Elife ; 122023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37843988

RESUMEN

Flagella are important for bacterial motility as well as for pathogenesis. Synthesis of these structures is energy intensive and, while extensive transcriptional regulation has been described, little is known about the posttranscriptional regulation. Small RNAs (sRNAs) are widespread posttranscriptional regulators, most base pairing with mRNAs to affect their stability and/or translation. Here, we describe four UTR-derived sRNAs (UhpU, MotR, FliX and FlgO) whose expression is controlled by the flagella sigma factor σ28 (fliA) in Escherichia coli. Interestingly, the four sRNAs have varied effects on flagellin protein levels, flagella number and cell motility. UhpU, corresponding to the 3´ UTR of a metabolic gene, likely has hundreds of targets including a transcriptional regulator at the top flagella regulatory cascade connecting metabolism and flagella synthesis. Unlike most sRNAs, MotR and FliX base pair within the coding sequences of target mRNAs and act on ribosomal protein mRNAs connecting ribosome production and flagella synthesis. The study shows how sRNA-mediated regulation can overlay a complex network enabling nuanced control of flagella synthesis.


Asunto(s)
Proteínas de Escherichia coli , ARN Pequeño no Traducido , Proteínas de Escherichia coli/metabolismo , ARN Pequeño no Traducido/metabolismo , ARN Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Flagelos/genética , Flagelos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/genética
15.
Dev Cell ; 58(12): 1052-1070.e10, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37105173

RESUMEN

Organismal homeostasis and regeneration are predicated on committed stem cells that can reside for long periods in a mitotically dormant but reversible cell-cycle arrest state defined as quiescence. Premature escape from quiescence is detrimental, as it results in stem cell depletion, with consequent defective tissue homeostasis and regeneration. Here, we report that Polycomb Ezh1 confers quiescence to murine muscle stem cells (MuSCs) through a non-canonical function. In the absence of Ezh1, MuSCs spontaneously exit quiescence. Following repeated injuries, the MuSC pool is progressively depleted, resulting in failure to sustain proper muscle regeneration. Rather than regulating repressive histone H3K27 methylation, Ezh1 maintains gene expression of the Notch signaling pathway in MuSCs. Selective genetic reconstitution of the Notch signaling corrects stem cell number and re-establishes quiescence of Ezh1-/- MuSCs.


Asunto(s)
Transducción de Señal , Células Madre , Ratones , Animales , División Celular , Puntos de Control del Ciclo Celular , Músculos
16.
J Bacteriol ; 194(6): 1389-400, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22228731

RESUMEN

Legionella pneumophila, the causative agent of a severe pneumonia known as Legionnaires' disease, intercepts material from host cell membrane transport pathways to create a specialized vacuolar compartment that supports bacterial replication. Delivery of bacterial effector proteins into the host cell requires the Dot/Icm type IV secretion system. Several effectors, including SidM, SidD, and LepB, were shown to target the early secretory pathway by manipulating the activity of the host GTPase Rab1. While the function of these effectors has been well characterized, the role of another Rab1-interacting protein from L. pneumophila, the effector protein LidA, is poorly understood. Here, we show that LidA binding to Rab1 stabilized the Rab1-guanosine nucleotide complex, protecting it from inactivation by GTPase-activating proteins (GAPs) and from nucleotide extraction. The protective effect of LidA on the Rab1-guanine nucleotide complex was concentration dependent, consistent with a 1:1 stoichiometry of the LidA-Rab1 complex. The central coiled-coil region of LidA was sufficient for Rab1 binding and to prevent GAP-mediated inactivation or nucleotide extraction from Rab1. In addition, the central region mediated binding to phosphatidylinositol 3-phosphate and other phosphoinositides. When bound to Rab1, LidA interfered with the covalent modification of Rab1 by phosphocholination or AMPylation, and it also blocked de-AMPylation of Rab1 by SidD and dephosphocholination by Lem3. Based on these findings, we propose a role for LidA in bridging the membrane of the Legionella-containing vacuole (LCV) with that of secretory transport vesicles surrounding the LCV.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Legionella pneumophila/patogenicidad , Nucleótidos/metabolismo , Factores de Virulencia/metabolismo , Proteínas de Unión al GTP rab1/metabolismo , Línea Celular , Humanos , Macrófagos/microbiología , Mapeo de Interacción de Proteínas
17.
Nat Commun ; 12(1): 4552, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315878

RESUMEN

The ability of endolysosomal organelles to move within the cytoplasm is essential for the performance of their functions. Long-range movement involves coupling of the endolysosomes to motor proteins that carry them along microtubule tracks. This movement is influenced by interactions with other organelles, but the mechanisms involved are incompletely understood. Herein we show that the sorting nexin SNX19 tethers endolysosomes to the endoplasmic reticulum (ER), decreasing their motility and contributing to their concentration in the perinuclear area of the cell. Tethering depends on two N-terminal transmembrane domains that anchor SNX19 to the ER, and a PX domain that binds to phosphatidylinositol 3-phosphate on the endolysosomal membrane. Two other domains named PXA and PXC negatively regulate the interaction of SNX19 with endolysosomes. These studies thus identify a mechanism for controlling the motility and positioning of endolysosomes that involves tethering to the ER by a sorting nexin.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , Nexinas de Clasificación/metabolismo , Línea Celular Tumoral , Retículo Endoplásmico/ultraestructura , Endosomas/ultraestructura , Humanos , Lisosomas/ultraestructura , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , Nexinas de Clasificación/química
18.
Nat Commun ; 12(1): 6750, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34799570

RESUMEN

The multispanning membrane protein ATG9A is a scramblase that flips phospholipids between the two membrane leaflets, thus contributing to the expansion of the phagophore membrane in the early stages of autophagy. Herein, we show that depletion of ATG9A does not only inhibit autophagy but also increases the size and/or number of lipid droplets in human cell lines and C. elegans. Moreover, ATG9A depletion blocks transfer of fatty acids from lipid droplets to mitochondria and, consequently, utilization of fatty acids in mitochondrial respiration. ATG9A localizes to vesicular-tubular clusters (VTCs) that are tightly associated with an ER subdomain enriched in another multispanning membrane scramblase, TMEM41B, and also in close proximity to phagophores, lipid droplets and mitochondria. These findings indicate that ATG9A plays a critical role in lipid mobilization from lipid droplets to autophagosomes and mitochondria, highlighting the importance of ATG9A in both autophagic and non-autophagic processes.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Gotas Lipídicas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Animales Modificados Genéticamente , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Ácidos Grasos/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Humanos , Movilización Lipídica , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Mutación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Transporte Vesicular/genética
19.
Dev Biol ; 325(1): 225-37, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19000668

RESUMEN

Primary cilia are assembled and maintained by evolutionarily conserved intraflagellar transport (IFT) proteins that are involved in the coordinated movement of macromolecular cargo from the basal body to the cilium tip and back. The IFT machinery is organized in two structural complexes named complex A and complex B. Recently, inactivation in the mouse germline of Ift genes belonging to complex B revealed a requirement of ciliogenesis, or proteins involved in ciliogenesis, for Sonic Hedgehog (Shh) signaling in mammals. Here we report on a complex A mutant mouse, defective for the Ift122 gene. Ift122-null embryos show multiple developmental defects (exencephaly, situs viscerum inversus, delay in turning, hemorrhage and defects in limb development) that result in lethality. In the node, primary cilia were absent or malformed in homozygous mutant and heterozygous embryos, respectively. Impairment of the Shh pathway was apparent in both neural tube patterning (expansion of motoneurons and rostro-caudal level-dependent contraction or expansion of the dorso-lateral interneurons), and limb patterning (ectrosyndactyly). These phenotypes are distinct from both complex B IFT mutant embryos and embryos defective for the ciliary protein hennin/Arl13b, and suggest reduced levels of both Gli2/Gli3 activator and Gli3 repressor functions. We conclude that complex A and complex B factors play similar but distinct roles in ciliogenesis and Shh/Gli3 signaling.


Asunto(s)
Cilios/metabolismo , Reparación del ADN , Pérdida del Embrión/genética , Endodesoxirribonucleasas/genética , Silenciador del Gen , Proteínas Hedgehog/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Adaptadoras Transductoras de Señales , Alelos , Animales , Tipificación del Cuerpo , Cilios/ultraestructura , Proteínas del Citoesqueleto , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/ultraestructura , Desarrollo Embrionario , Endodesoxirribonucleasas/metabolismo , Extremidades/embriología , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Homocigoto , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Neuronas/citología , Neuronas/metabolismo , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
20.
Matrix Biol ; 93: 79-94, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32562852

RESUMEN

Efficient quality control and export of procollagen from the cell is crucial for extracellular matrix homeostasis, yet it is still incompletely understood. One of the debated questions is the role of a collagen-specific ER chaperone HSP47 in these processes. Most ER chaperones preferentially bind to unfolded polypeptide chains, enabling selective export of natively folded proteins from the ER after chaperone release. In contrast, HSP47 preferentially binds to the natively folded procollagen and is believed to be released only in the ER-Golgi intermediate compartment (ERGIC) or cis-Golgi. HSP47 colocalization with procollagen in punctate structures observed by immunofluorescence imaging of fixed cells has thus been interpreted as evidence for HSP47 export from the ER together with procollagen in transport vesicles destined for ERGIC or Golgi. To understand the mechanism of this co-trafficking and its physiological significance, we imaged the dynamics of fluorescently tagged type I procollagen and HSP47 punctate structures in live MC3T3 murine osteoblasts with up to 120 nm spatial and 500 ms time resolution. Contrary to the prevailing model, we discovered that most bona fide carriers delivering procollagen from ER exit sites (ERESs) to Golgi contained no HSP47, unless the RDEL signal for ER retention in HSP47 was deleted or mutated. These transport intermediates exhibited characteristic rapid, directional motion along microtubules, while puncta with colocalized HSP47 and procollagen similar to the ones described before had only limited, stochastic motion. Live cell imaging and fluorescence recovery after photobleaching revealed that the latter puncta (including the ones induced by ARF1 inhibition) were dilated regions of ER lumen, ERESs, or autophagic structures surrounded by lysosomal membranes. Procollagen was colocalized with HSP47 and ERGIC53 at ERESs. It was colocalized with ERGIC53 but not HSP47 in Golgi-bound transport intermediates. Our results suggest that procollagen and HSP47 sorting occurs at ERES before procollagen is exported from the ER in Golgi-bound transport intermediates, providing new insights into mechanisms of procollagen trafficking.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas del Choque Térmico HSP47/metabolismo , Osteoblastos/citología , Procolágeno/metabolismo , Células 3T3 , Animales , Lisosomas/metabolismo , Lectinas de Unión a Manosa/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Microscopía Fluorescente , Osteoblastos/metabolismo , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA