Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38617221

RESUMEN

SARS-CoV-2 main protease, M pro , is responsible for the processing of the viral polyproteins into individual proteins, including the protease itself. M pro is a key target of anti-COVID-19 therapeutics such as nirmatrelvir (the active component of Paxlovid). Resistance mutants identified clinically and in viral passage assays contain a combination of active site mutations (e.g. E166V, E166A, L167F), which reduce inhibitor binding and enzymatic activity, and non-active site mutations (e.g. P252L, T21I, L50F), which restore the fitness of viral replication. Although the mechanism of resistance for the active site mutations is apparent, the role of the non-active site mutations in fitness rescue remains elusive. In this study, we use the model system of a M pro triple mutant (L50F/E166A/L167F) that confers not only nirmatrelvir drug resistance but also a similar fitness of replication compared to the wild-type both in vitro and in vivo. By comparing peptide and full-length M pro protein as substrates, we demonstrate that the binding of M pro substrate involves more than residues in the active site. In particular, L50F and other non-active site mutations can enhance the M pro dimer-dimer interactions and help place the nsp5-6 substrate at the enzyme catalytic center. The structural and enzymatic activity data of M pro L50F, L50F/E166A/L167F, and others underscore the importance of considering the whole substrate protein in studying M pro and substrate interactions, and offers important insights into M pro function, resistance development, and inhibitor design.

2.
Elife ; 132024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639993

RESUMEN

In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to fine-tune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.


Asunto(s)
Proteínas Bacterianas , Proteínas del Citoesqueleto , Unión Proteica , Conformación Proteica , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/química , Cristalografía por Rayos X , Proteínas de Unión a las Penicilinas/metabolismo , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/química , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA