Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(4): 551-566, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36048859

RESUMEN

Targeting AMP-activated protein kinase (AMPK) is emerging as a promising strategy for treating myotonic dystrophy type 1 (DM1), the most prevalent form of adult-onset muscular dystrophy. We previously demonstrated that 5-aminomidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR) and exercise, two potent AMPK activators, improve disease features in DM1 mouse skeletal muscles. Here, we employed a combinatorial approach with these AMPK activators and examined their joint impact on disease severity in male and female DM1 mice. Our data reveal that swimming exercise additively enhances the effect of AICAR in mitigating the nuclear accumulation of toxic CUGexp RNA foci. In addition, our findings show a trend towards an enhanced reversal of MBNL1 sequestration and correction in pathogenic alternative splicing events. Our results further demonstrate that the combinatorial impact of exercise and AICAR promotes muscle fiber hypertrophy in DM1 skeletal muscle. Importantly, these improvements occur in a sex-specific manner with greater benefits observed in female DM1 mice. Our findings demonstrate that combining AMPK-activating interventions may prove optimal for rescuing the DM1 muscle phenotype and uncover important sex differences in the response to AMPK-based therapeutic strategies in DM1 mice.


Asunto(s)
Distrofia Miotónica , Condicionamiento Físico Animal , Animales , Femenino , Masculino , Ratones , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Músculo Esquelético/metabolismo , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Ribonucleótidos/farmacología
2.
Hum Mol Genet ; 31(9): 1453-1470, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34791230

RESUMEN

Spinal muscular atrophy (SMA) is characterized by the loss of alpha motor neurons in the spinal cord and a progressive muscle weakness and atrophy. SMA is caused by loss-of-function mutations and/or deletions in the survival of motor neuron (SMN) gene. The role of SMN in motor neurons has been extensively studied, but its function and the consequences of its loss in muscle have also emerged as a key aspect of SMA pathology. In this study, we explore the molecular mechanisms involved in muscle defects in SMA. First, we show in C2C12 myoblasts, that arginine methylation by CARM1 controls myogenic differentiation. More specifically, the methylation of HuR on K217 regulates HuR levels and subcellular localization during myogenic differentiation, and the formation of myotubes. Furthermore, we demonstrate that SMN and HuR interact in C2C12 myoblasts. Interestingly, the SMA-causing E134K point mutation within the SMN Tudor domain, and CARM1 depletion, modulate the SMN-HuR interaction. In addition, using the Smn2B/- mouse model, we report that CARM1 levels are markedly increased in SMA muscles and that HuR fails to properly respond to muscle denervation, thereby affecting the regulation of its mRNA targets. Altogether, our results show a novel CARM1-HuR axis in the regulation of muscle differentiation and plasticity as well as in the aberrant regulation of this axis caused by the absence of SMN in SMA muscle. With the recent developments of therapeutics targeting motor neurons, this study further indicates the need for more global therapeutic approaches for SMA.


Asunto(s)
Atrofia Muscular Espinal , Animales , Modelos Animales de Enfermedad , Proteína 1 Similar a ELAV , Ratones , Neuronas Motoras/metabolismo , Músculos/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética
3.
Cell Mol Life Sci ; 80(11): 328, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37847286

RESUMEN

Elevated mitochondrial metabolism promotes tumorigenesis of Embryonal Rhabdomyosarcomas (ERMS). Accordingly, targeting oxidative phosphorylation (OXPHOS) could represent a therapeutic strategy for ERMS. We previously demonstrated that genetic reduction of Staufen1 (STAU1) levels results in the inhibition of ERMS tumorigenicity. Here, we examined STAU1-mediated mechanisms in ERMS and focused on its potential involvement in regulating OXPHOS. We report the novel and differential role of STAU1 in mitochondrial metabolism in cancerous versus non-malignant skeletal muscle cells (NMSkMCs). Specifically, our data show that STAU1 depletion reduces OXPHOS and inhibits proliferation of ERMS cells. Our findings further reveal the binding of STAU1 to several OXPHOS mRNAs which affects their stability. Indeed, STAU1 depletion reduced the stability of OXPHOS mRNAs, causing inhibition of mitochondrial metabolism. In parallel, STAU1 depletion impacted negatively the HIF2α pathway which further modulates mitochondrial metabolism. Exogenous expression of HIF2α in STAU1-depleted cells reversed the mitochondrial inhibition and induced cell proliferation. However, opposite effects were observed in NMSkMCs. Altogether, these findings revealed the impact of STAU1 in the regulation of mitochondrial OXPHOS in cancer cells as well as its differential role in NMSkMCs. Overall, our results highlight the therapeutic potential of targeting STAU1 as a novel approach for inhibiting mitochondrial metabolism in ERMS.


Asunto(s)
Rabdomiosarcoma Embrionario , Humanos , Rabdomiosarcoma Embrionario/genética , Rabdomiosarcoma Embrionario/tratamiento farmacológico , Rabdomiosarcoma Embrionario/metabolismo , Proteínas del Citoesqueleto/metabolismo , Transformación Celular Neoplásica , Carcinogénesis/genética , Proliferación Celular/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo
4.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835205

RESUMEN

Myotonic dystrophy type 1 (DM1), the most common form of adult muscular dystrophy, is caused by an abnormal expansion of CTG repeats in the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. The expanded repeats of the DMPK mRNA form hairpin structures in vitro, which cause misregulation and/or sequestration of proteins including the splicing regulator muscleblind-like 1 (MBNL1). In turn, misregulation and sequestration of such proteins result in the aberrant alternative splicing of diverse mRNAs and underlie, at least in part, DM1 pathogenesis. It has been previously shown that disaggregating RNA foci repletes free MBNL1, rescues DM1 spliceopathy, and alleviates associated symptoms such as myotonia. Using an FDA-approved drug library, we have screened for a reduction of CUG foci in patient muscle cells and identified the HDAC inhibitor, vorinostat, as an inhibitor of foci formation; SERCA1 (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase) spliceopathy was also improved by vorinostat treatment. Vorinostat treatment in a mouse model of DM1 (human skeletal actin-long repeat; HSALR) improved several spliceopathies, reduced muscle central nucleation, and restored chloride channel levels at the sarcolemma. Our in vitro and in vivo evidence showing amelioration of several DM1 disease markers marks vorinostat as a promising novel DM1 therapy.


Asunto(s)
Distrofia Miotónica , Empalme del ARN , Vorinostat , Adulto , Animales , Humanos , Ratones , Empalme Alternativo/efectos de los fármacos , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofia Miotónica/genética , Empalme del ARN/efectos de los fármacos , ARN Mensajero/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Expansión de Repetición de Trinucleótido , Vorinostat/metabolismo
5.
J Physiol ; 600(14): 3249-3264, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35695045

RESUMEN

Myotonic dystrophy type 1 (DM1) is a multisystemic disorder with variable clinical features. Currently, there is no cure or effective treatment for DM1. The disease is caused by an expansion of CUG repeats in the 3' UTR of DMPK mRNAs. Mutant DMPK mRNAs accumulate in nuclei as RNA foci and trigger an imbalance in the level and localization of RNA-binding proteins causing the characteristic missplicing events that account for the varied DM1 symptoms, a disease mechanism referred to as RNA toxicity. In recent years, multiple signalling pathways have been identified as being aberrantly regulated in skeletal muscle in response to the CUG expansion, including AMPK, a sensor of energy status, as well as a master regulator of cellular energy homeostasis. Converging lines of evidence highlight the benefits of activating AMPK signalling pharmacologically on RNA toxicity, as well as on muscle histology and function, in preclinical DM1 models. Importantly, a clinical trial with metformin, an activator of AMPK, resulted in functional benefits in DM1 patients. In addition, exercise, a known AMPK activator, has shown promising effects on RNA toxicity and muscle function in DM1 mice. Finally, clinical trials involving moderate-intensity exercise also induced functional benefits for DM1 patients. Taken together, these studies clearly demonstrate the molecular, histological and functional benefits of AMPK activation and exercise-based interventions on the DM1 phenotype. Despite these advances, several key questions remain; in particular, the extent of the true implication of AMPK in the observed beneficial improvements, as well as how, mechanistically, activation of AMPK signalling improves the DM1 pathophysiology.


Asunto(s)
Distrofia Miotónica , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Ratones , Músculo Esquelético/metabolismo , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , ARN Mensajero/metabolismo , Expansión de Repetición de Trinucleótido
6.
J Cell Physiol ; 237(10): 3944-3959, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35938715

RESUMEN

The development and regeneration of skeletal muscle are mediated by satellite cells (SCs), which ensure the efficient formation of myofibers while repopulating the niche that allows muscle repair following injuries. Pannexin 1 (Panx1) channels are expressed in SCs and their levels increase during differentiation in vitro, as well as during skeletal muscle development and regeneration in vivo. Panx1 has recently been shown to regulate muscle regeneration by promoting bleb-based myoblast migration and fusion. While skeletal muscle is largely influenced in a sex-specific way, the sex-dependent roles of Panx1 in regulating skeletal muscle and SC function remain to be investigated. Here, using global Panx1 knockout (KO) mice, we demonstrate that Panx1 loss reduces muscle fiber size and strength, decreases SC number, and alters early SC differentiation and myoblast fusion in male, but not in female mice. Interestingly, while both male and female Panx1 KO mice display an increase in the number of regenerating fibers following acute injury, the newly formed fibers in male Panx1 KO mice are smaller. Overall, our results demonstrate that Panx1 plays a significant role in regulating muscle development, regeneration, and SC number and function in male mice and reveal distinct sex-dependent functions of Panx1 in skeletal muscle.


Asunto(s)
Mioblastos , Células Satélite del Músculo Esquelético , Animales , Diferenciación Celular , Conexinas/genética , Femenino , Masculino , Ratones , Ratones Noqueados , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas , Músculo Esquelético , Proteínas del Tejido Nervioso/genética
7.
Hum Mol Genet ; 29(13): 2185-2199, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32504084

RESUMEN

In myotonic dystrophy type 1 (DM1), the CUG expansion (CUGexp) in the 3' untranslated region of the dystrophia myotonica protein kinase messenger ribonucleic acid affects the homeostasis of ribonucleic acid-binding proteins, causing the multiple symptoms of DM1. We have previously reported that Staufen1 is increased in skeletal muscles from DM1 mice and patients and that sustained Staufen1 expression in mature mouse muscle causes a progressive myopathy. Here, we hypothesized that the elevated levels of Staufen1 contributes to the myopathic features of the disease. Interestingly, the classic DM1 mouse model human skeletal actin long repeat (HSALR) lacks overt atrophy while expressing CUGexp transcripts and elevated levels of endogenous Staufen1, suggesting a lower sensitivity to atrophic signaling in this model. We report that further overexpression of Staufen1 in the DM1 mouse model HSALR causes a myopathy via inhibition of protein kinase B signaling through an increase in phosphatase tensin homolog, leading to the expression of atrogenes. Interestingly, we also show that Staufen1 regulates the expression of muscleblind-like splicing regulator 1 and CUG-binding protein elav-like family member 1 in wild-type and DM1 skeletal muscle. Together, data obtained from these new DM1 mouse models provide evidence for the role of Staufen1 as an atrophy-associated gene that impacts progressive muscle wasting in DM1. Accordingly, our findings highlight the potential of Staufen1 as a therapeutic target and biomarker.


Asunto(s)
Atrofia Muscular Espinal/genética , Distrofia Miotónica/genética , Proteínas de Unión al ARN/genética , Empalme Alternativo/genética , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular Espinal/patología , Distrofia Miotónica/patología , Empalme del ARN/genética , ARN Mensajero/genética , Expansión de Repetición de Trinucleótido/genética
8.
Cell Mol Life Sci ; 78(23): 7145-7160, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34633481

RESUMEN

The double-stranded multifunctional RNA-binding protein (dsRBP) Staufen was initially discovered in insects as a regulator of mRNA localization. Later, its mammalian orthologs have been described in different organisms, including humans. Two human orthologues of Staufen, named Staufen1 (STAU1) and Staufen2 (STAU2), share some structural and functional similarities. However, given their different spatio-temporal expression patterns, each of these orthologues plays distinct roles in cells. In the current review, we focus on the role of STAU1 in cell functions and cancer development. Since its discovery, STAU1 has mostly been studied for its involvement in various aspects of RNA metabolism. Given the pivotal role of RNA metabolism within cells, recent studies have explored the mechanistic impact of STAU1 in a wide variety of cell functions ranging from cell growth to cell death, as well as in various disease states. In particular, there has been increasing attention on the role of STAU1 in neuromuscular disorders, neurodegeneration, and cancer. Here, we provide an overview of the current knowledge on the role of STAU1 in RNA metabolism and cell functions. We also highlight the link between STAU1-mediated control of cellular functions and cancer development, progression, and treatment. Hence, our review emphasizes the potential of STAU1 as a novel biomarker and therapeutic target for cancer diagnosis and treatment, respectively.


Asunto(s)
Carcinogénesis/patología , Proteínas del Citoesqueleto/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/patología , Enfermedades Neuromusculares/patología , Proteínas de Unión al ARN/metabolismo , Animales , Sitios de Unión/fisiología , Diferenciación Celular/fisiología , Línea Celular Tumoral , Polaridad Celular/fisiología , Transformación Celular Neoplásica/patología , Proteínas del Citoesqueleto/genética , Humanos , Ratones , Proteínas del Tejido Nervioso/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética
9.
Int J Mol Sci ; 23(10)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35628300

RESUMEN

Besides the loss of muscle mass and strength, increased intermuscular adipose tissue (IMAT) is now a well-recognized consequence of muscle deconditioning as experienced in prolonged microgravity. IMAT content may alter the muscle stem cell microenvironment. We hypothesized that extracellular matrix structure alterations and microenvironment remodeling induced by fast and severe muscle disuse could modulate fibro-adipogenic progenitor fate and behavior. We used the dry immersion (DI) model that rapidly leads to severe muscle deconditioning due to drastic hypoactivity. We randomly assigned healthy volunteers (n = 18 men) to the control group (only DI, n = 9; age = 33.8 ± 4) or to the DI + thigh cuff group (n = 9; age = 33.4 ± 7). Participants remained immersed in the supine position in a thermo-neutral water bath for 5 days. We collected vastus lateralis biopsies before (baseline) and after DI. 5 days of DI are sufficient to reduce muscle mass significantly, as indicated by the decreased myofiber cross-sectional area in vastus lateralis samples (−18% vs. baseline, p < 0.05). Early and late adipogenic differentiation transcription factors protein levels were upregulated. Platelet-derived growth Factors alpha (PDGFR⍺) protein level and PDGFR⍺-positive cells were increased after 5 days of DI. Extracellular matrix structure was prone to remodeling with an altered ECM composition with 4 major collagens, fibronectin, and Connective Tissue Growth Factor mRNA decreases (p < 0.001 vs. baseline). Wearing thigh cuffs did not have any preventive effect on the measured variable. Our results show that altered extracellular matrix structure and signaling pathways occur early during DI, a severe muscle wasting model, favoring fibro-adipogenic progenitor differentiation into adipocytes.


Asunto(s)
Adipocitos , Músculo Esquelético , Adipogénesis/fisiología , Adulto , Diferenciación Celular/fisiología , Matriz Extracelular , Humanos , Masculino , Músculo Esquelético/metabolismo
10.
BMC Cancer ; 21(1): 120, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33541283

RESUMEN

BACKGROUND: Prostate cancer is one of the most common malignant cancers with the second highest global rate of mortality in men. During the early stages of disease progression, tumour growth is local and androgen-dependent. Despite treatment, a large percentage of patients develop androgen-independent prostate cancer, which often results in metastases, a leading cause of mortality in these patients. Our previous work on the RNA-binding protein Staufen1 demonstrated its novel role in cancer biology, and in particular rhabdomyosarcoma tumorigenesis. To build upon this work, we have focused on the role of Staufen1 in other forms of cancer and describe here the novel and differential roles of Staufen1 in prostate cancer. METHODS: Using a cell-based approach, three independent prostate cancer cell lines with different characteristics were used to evaluate the expression of Staufen1 in human prostate cancer relative to control prostate cells. The functional impact of Staufen1 on several key oncogenic features of prostate cancer cells including proliferation, apoptosis, migration and invasion were systematically investigated. RESULTS: We show that Staufen1 levels are increased in all human prostate cancer cells examined in comparison to normal prostate epithelial cells. Furthermore, Staufen1 differentially regulates growth, migration, and invasion in the various prostate cancer cells assessed. In LNCaP prostate cancer cells, Staufen1 regulates cell proliferation through mTOR activation. Conversely, Staufen1 regulates migration and invasion of the highly invasive, bone metastatic-derived, PC3 prostate cells via the activation of focal adhesion kinase. CONCLUSIONS: Collectively, these results show that Staufen1 has a direct impact in prostate cancer development and further demonstrate that its functions vary amongst the prostate cancer cell types. Accordingly, Staufen1 represents a novel target for the development of much-needed therapeutic strategies for prostate cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas del Citoesqueleto/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/patología , Proteínas de Unión al ARN/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Ciclo Celular , Movimiento Celular , Proliferación Celular , Proteínas del Citoesqueleto/genética , Humanos , Masculino , Invasividad Neoplásica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas de Unión al ARN/genética , Células Tumorales Cultivadas
11.
RNA Biol ; 18(9): 1238-1251, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33164678

RESUMEN

Internal-ribosomal entry sites (IRES) are translational elements that allow the initiation machinery to start protein synthesis via internal initiation. IRESs promote tissue-specific translation in stress conditions when conventional cap-dependent translation is inhibited. Since many IRES-containing mRNAs are relevant to diseases, this cellular mechanism is emerging as an attractive therapeutic target for pharmacological and genetic modulations. Indeed, there has been growing interest over the past years in determining the therapeutic potential of IRESs for several disease conditions such as cancer, neurodegeneration and neuromuscular diseases including Duchenne muscular dystrophy (DMD). IRESs relevant for DMD have been identified in several transcripts whose protein product results in functional improvements in dystrophic muscles. Together, these converging lines of evidence indicate that activation of IRES-mediated translation of relevant transcripts in DMD muscle represents a novel and appropriate therapeutic strategy for DMD that warrants further investigation, particularly to identify agents that can modulate their activity.


Asunto(s)
Sitios Internos de Entrada al Ribosoma , Distrofia Muscular de Duchenne/terapia , Biosíntesis de Proteínas , Animales , Humanos , Distrofia Muscular de Duchenne/genética
12.
Hum Mol Genet ; 27(19): 3361-3376, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29982462

RESUMEN

Myotonic dystrophy type 1 (DM1) is a debilitating multisystemic disorder caused by a triplet repeat expansion in the 3' untranslated region of dystrophia myotonica protein kinase mRNAs. Mutant mRNAs accumulate in the nucleus of affected cells and misregulate RNA-binding proteins, thereby promoting characteristic missplicing events. However, little is known about the signaling pathways that may be affected in DM1. Here, we investigated the status of activated protein kinase (AMPK) signaling in DM1 skeletal muscle and found that the AMPK pathway is markedly repressed in a DM1 mouse model (human skeletal actin-long repeat, HSALR) and patient-derived DM1 myoblasts. Chronic pharmacological activation of AMPK signaling in DM1 mice with 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR) has multiple beneficial effects on the DM1 phenotype. Indeed, a 6-week AICAR treatment of DM1 mice promoted expression of a slower, more oxidative phenotype, improved muscle histology and corrected several events associated with RNA toxicity. Importantly, AICAR also had a dose-dependent positive effect on the spliceopathy in patient-derived DM1 myoblasts. In separate experiments, we also show that chronic treatment of DM1 mice with resveratrol as well as voluntary wheel running also rescued missplicing events in muscle. Collectively, our findings demonstrate the therapeutic potential of chronic AMPK stimulation both physiologically and pharmacologically for DM1 patients.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Distrofia Miotónica/tratamiento farmacológico , Proteínas Quinasas/genética , Proteínas de Unión al ARN/genética , Ribonucleótidos/administración & dosificación , Quinasas de la Proteína-Quinasa Activada por el AMP , Aminoimidazol Carboxamida/administración & dosificación , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Actividad Motora/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiopatología , Mioblastos/efectos de los fármacos , Distrofia Miotónica/genética , Distrofia Miotónica/fisiopatología , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , Resveratrol/administración & dosificación , Expansión de Repetición de Trinucleótido/genética
13.
Hum Mol Genet ; 26(12): 2192-2206, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28369518

RESUMEN

Myotonic Dystrophy type 1 (DM1) is caused by an expansion of CUG repeats in DMPK mRNAs. This mutation affects alternative splicing through misregulation of RNA-binding proteins. Amongst pre-mRNAs that are mis-spliced, several code for proteins involved in calcium homeostasis suggesting that calcium-handling and signaling are perturbed in DM1. Here, we analyzed expression of such proteins in DM1 mouse muscle. We found that the levels of several sarcoplasmic reticulum proteins (SERCA1, sarcolipin and calsequestrin) are altered, likely contributing to an imbalance in calcium homeostasis. We also observed that calcineurin (CnA) signaling is hyperactivated in DM1 muscle. Indeed, CnA expression and phosphatase activity are both markedly increased in DM1 muscle. Coherent with this, we found that activators of the CnA pathway (MLP, FHL1) are also elevated. Consequently, NFATc1 expression is increased in DM1 muscle and becomes relocalized to myonuclei, together with an up-regulation of its transcriptional targets (RCAN1.4 and myoglobin). Accordingly, DM1 mouse muscles display an increase in oxidative metabolism and fiber hypertrophy. To determine the functional consequences of this CnA hyperactivation, we administered cyclosporine A, an inhibitor of CnA, to DM1 mice. Muscles of treated DM1 mice showed an increase in CUGBP1 levels, and an exacerbation of key alternative splicing events associated with DM1. Finally, inhibition of CnA in cultured human DM1 myoblasts also resulted in a splicing exacerbation of the insulin receptor. Together, these findings show for the first time that calcium-CnA signaling is hyperactivated in DM1 muscle and that such hyperactivation represents a beneficial compensatory adaptation to the disease.


Asunto(s)
Calcineurina/metabolismo , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Empalme Alternativo , Animales , Antígenos CD , Calcineurina/genética , Calcio/metabolismo , Señalización del Calcio , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Homeostasis , Humanos , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Distrofia Miotónica/metabolismo , Proteína Quinasa de Distrofia Miotónica/metabolismo , Factores de Transcripción NFATC , Empalme del ARN , ARN Mensajero/genética , Proteínas de Unión al ARN , Receptor de Insulina , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Transducción de Señal , Regulación hacia Arriba
14.
Hum Mol Genet ; 26(10): 1821-1838, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28369467

RESUMEN

Converging lines of evidence have now highlighted the key role for post-transcriptional regulation in the neuromuscular system. In particular, several RNA-binding proteins are known to be misregulated in neuromuscular disorders including myotonic dystrophy type 1, spinal muscular atrophy and amyotrophic lateral sclerosis. In this study, we focused on the RNA-binding protein Staufen1, which assumes multiple functions in both skeletal muscle and neurons. Given our previous work that showed a marked increase in Staufen1 expression in various physiological and pathological conditions including denervated muscle, in embryonic and undifferentiated skeletal muscle, in rhabdomyosarcomas as well as in myotonic dystrophy type 1 muscle samples from both mouse models and humans, we investigated the impact of sustained Staufen1 expression in postnatal skeletal muscle. To this end, we generated a skeletal muscle-specific transgenic mouse model using the muscle creatine kinase promoter to drive tissue-specific expression of Staufen1. We report that sustained Staufen1 expression in postnatal skeletal muscle causes a myopathy characterized by significant morphological and functional deficits. These deficits are accompanied by a marked increase in the expression of several atrophy-associated genes and by the negative regulation of PI3K/AKT signaling. We also uncovered that Staufen1 mediates PTEN expression through indirect transcriptional and direct post-transcriptional events thereby providing the first evidence for Staufen1-regulated PTEN expression. Collectively, our data demonstrate that Staufen1 is a novel atrophy-associated gene, and highlight its potential as a biomarker and therapeutic target for neuromuscular disorders and conditions.


Asunto(s)
Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Expresión Génica , Ratones , Ratones Noqueados , Desnervación Muscular , Músculo Esquelético/metabolismo , Músculos/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular Espinal/metabolismo , Distrofia Miotónica/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/genética , ARN/metabolismo , Procesamiento Postranscripcional del ARN , Transducción de Señal , Tensinas
15.
FASEB J ; 32(9): 5090-5103, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29723037

RESUMEN

Duchenne muscular dystrophy (DMD) is a genetic and progressive neuromuscular disorder caused by mutations and deletions in the dystrophin gene. Although there is currently no cure, one promising treatment for DMD is aimed at increasing endogenous levels of utrophin A to compensate functionally for the lack of dystrophin. Recent studies from our laboratory revealed that heparin treatment of mdx mice activates p38 MAPK, leading to an upregulation of utrophin A expression and improvements in the dystrophic phenotype. Based on these findings, we sought to determine the effects of other potent p38 activators, including the cyclooxygenase (COX)-2 inhibitor celecoxib. In this study, we treated 6-wk-old mdx mice for 4 wk with celecoxib. Immunofluorescence analysis of celecoxib-treated mdx muscles revealed a fiber type switch from a fast to a slower phenotype along with beneficial effects on muscle fiber integrity. In agreement, celecoxib-treated mdx mice showed improved muscle strength. Celecoxib treatment also induced increases in utrophin A expression ranging from ∼1.5- to 2-fold in tibialis anterior diaphragm and heart muscles. Overall, these results highlight that activation of p38 in muscles can indeed lead to an attenuation of the dystrophic phenotype and reveal the potential role of celecoxib as a novel therapeutic agent for the treatment of DMD.-Péladeau, C., Adam, N. J., Jasmin, B. J. Celecoxib treatment improves muscle function in mdx mice and increases utrophin A expression.


Asunto(s)
Celecoxib/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Utrofina/metabolismo , Animales , Ciclooxigenasa 2/metabolismo , Diafragma/efectos de los fármacos , Diafragma/metabolismo , Distrofina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Fuerza Muscular/efectos de los fármacos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Miocardio/metabolismo , Fenotipo , Regulación hacia Arriba/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
PLoS Genet ; 12(1): e1005827, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26824521

RESUMEN

Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by an expansion of CUG repeats in the 3' UTR of the DMPK gene. The CUG repeats form aggregates of mutant mRNA, which cause misregulation and/or sequestration of RNA-binding proteins, causing aberrant alternative splicing in cells. Previously, we showed that the multi-functional RNA-binding protein Staufen1 (Stau1) was increased in skeletal muscle of DM1 mouse models and patients. We also showed that Stau1 rescues the alternative splicing profile of pre-mRNAs, e.g. the INSR and CLC1, known to be aberrantly spliced in DM1. In order to explore further the potential of Stau1 as a therapeutic target for DM1, we first investigated the mechanism by which Stau1 regulates pre-mRNA alternative splicing. We report here that Stau1 regulates the alternative splicing of exon 11 of the human INSR via binding to Alu elements located in intron 10. Additionally, using a high-throughput RT-PCR screen, we have identified numerous Stau1-regulated alternative splicing events in both WT and DM1 myoblasts. A number of these aberrant ASEs in DM1, including INSR exon 11, are rescued by overexpression of Stau1. However, we find other ASEs in DM1 cells, where overexpression of Stau1 shifts the splicing patterns away from WT conditions. Moreover, we uncovered that Stau1-regulated ASEs harbour Alu elements in intronic regions flanking the alternative exon more than non-Stau1 targets. Taken together, these data highlight the broad impact of Stau1 as a splicing regulator and suggest that Stau1 may act as a disease modifier in DM1.


Asunto(s)
Empalme Alternativo/genética , Proteínas del Citoesqueleto/genética , Proteína Quinasa de Distrofia Miotónica/genética , Proteínas de Unión al ARN/genética , Expansión de Repetición de Trinucleótido/genética , Regiones no Traducidas 3' , Elementos Alu/genética , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Proteínas del Citoesqueleto/metabolismo , Humanos , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mioblastos/metabolismo , Mioblastos/patología , Distrofia Miotónica , Proteína Quinasa de Distrofia Miotónica/metabolismo , Unión Proteica , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
17.
J Cell Physiol ; 233(10): 7057-7070, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29744875

RESUMEN

Pannexin 1 (Panx1) and Pannexin 3 (Panx3) are single membrane channels recently implicated in myogenic commitment, as well as myoblast proliferation and differentiation in vitro. However, their expression patterns during skeletal muscle development and regeneration had yet to be investigated. Here, we show that Panx1 levels increase during skeletal muscle development becoming highly expressed together with Panx3 in adult skeletal muscle. In adult mice, Panx1 and Panx3 were differentially expressed in fast- and slow-twitch muscles. We also report that Panx1/PANX1 and Panx3/PANX3 are co-expressed in mouse and human satellite cells, which play crucial roles in skeletal muscle regeneration. Interestingly, Panx1 and Panx3 levels were modulated in muscle degeneration/regeneration, similar to the pattern seen during skeletal muscle development. As Duchenne muscular dystrophy is characterized by skeletal muscle degeneration and impaired regeneration, we next used mild and severe mouse models of this disease and found a significant dysregulation of Panx1 and Panx3 levels in dystrophic skeletal muscles. Together, our results are the first demonstration that Panx1 and Panx3 are differentially expressed amongst skeletal muscle types with their levels being highly modulated during skeletal muscle development, regeneration, and dystrophy. These findings suggest that Panx1 and Panx3 channels may play important and distinct roles in healthy and diseased skeletal muscles.


Asunto(s)
Conexinas/metabolismo , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Ratones , Mioblastos/metabolismo , Regeneración/fisiología
18.
Hum Mol Genet ; 25(1): 24-43, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26494902

RESUMEN

Upregulation of utrophin A is an attractive therapeutic strategy for treating Duchenne muscular dystrophy (DMD). Over the years, several studies revealed that utrophin A is regulated by multiple transcriptional and post-transcriptional mechanisms, and that pharmacological modulation of these pathways stimulates utrophin A expression in dystrophic muscle. In particular, we recently showed that activation of p38 signaling causes an increase in the levels of utrophin A mRNAs and protein by decreasing the functional availability of the destabilizing RNA-binding protein called K-homology splicing regulatory protein, thereby resulting in increases in the stability of existing mRNAs. Here, we treated 6-week-old mdx mice for 4 weeks with the clinically used anticoagulant drug heparin known to activate p38 mitogen-activated protein kinase, and determined the impact of this pharmacological intervention on the dystrophic phenotype. Our results show that heparin treatment of mdx mice caused a significant ∼1.5- to 3-fold increase in utrophin A expression in diaphragm, extensor digitorum longus and tibialis anterior (TA) muscles. In agreement with these findings, heparin-treated diaphragm and TA muscle fibers showed an accumulation of utrophin A and ß-dystroglycan along their sarcolemma and displayed improved morphology and structural integrity. Moreover, combinatorial drug treatment using both heparin and 5-amino-4-imidazolecarboxamide riboside (AICAR), the latter targeting 5' adenosine monophosphate-activated protein kinase and the transcriptional activation of utrophin A, caused an additive effect on utrophin A expression in dystrophic muscle. These findings establish that heparin is a relevant therapeutic agent for treating DMD, and illustrate that combinatorial treatment of heparin with AICAR may serve as an effective strategy to further increase utrophin A expression in dystrophic muscle via activation of distinct signaling pathways.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Heparina/uso terapéutico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Ribonucleótidos/uso terapéutico , Utrofina/biosíntesis , Aminoimidazol Carboxamida/uso terapéutico , Animales , Línea Celular , Quimioterapia Combinada , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Utrofina/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
Nucleic Acids Res ; 44(6): 2661-76, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26656492

RESUMEN

Loss of 'Survival of Motor Neurons' (SMN) leads to spinal muscular atrophy (SMA), a disease characterized by degeneration of spinal cord alpha motor neurons, resulting in muscle weakness, paralysis and death during early childhood. SMN is required for assembly of the core splicing machinery, and splicing defects were documented in SMA. We previously uncovered that Coactivator-Associated Methyltransferase-1 (CARM1) is abnormally up-regulated in SMA, leading to mis-regulation of a number of transcriptional and alternative splicing events. We report here that CARM1 can promote decay of a premature terminating codon (PTC)-containing mRNA reporter, suggesting it can act as a mediator of nonsense-mediated mRNA decay (NMD). Interestingly, this pathway, while originally perceived as solely a surveillance mechanism preventing expression of potentially detrimental proteins, is now emerging as a highly regulated RNA decay pathway also acting on a subset of normal mRNAs. We further show that CARM1 associates with major NMD factor UPF1 and promotes its occupancy on PTC-containing transcripts. Finally, we identify a specific subset of NMD targets that are dependent on CARM1 for degradation and that are also misregulated in SMA, potentially adding exacerbated targeting of PTC-containing mRNAs to the already complex array of molecular defects associated with this disease.


Asunto(s)
Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Degradación de ARNm Mediada por Codón sin Sentido , Proteína-Arginina N-Metiltransferasas/genética , ARN Mensajero/genética , Transactivadores/genética , Empalme Alternativo , Animales , Línea Celular , Codón de Terminación , Exones , Humanos , Intrones , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/patología , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Proteína-Arginina N-Metiltransferasas/metabolismo , ARN Helicasas , ARN Mensajero/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Transactivadores/metabolismo
20.
Am J Physiol Cell Physiol ; 312(3): C209-C221, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28003225

RESUMEN

Over the last several years, converging lines of evidence have indicated that miR-206 plays a pivotal role in promoting muscle differentiation and regeneration, thereby potentially impacting positively on the progression of neuromuscular disorders, including Duchenne muscular dystrophy (DMD). Despite several studies showing the regulatory function of miR-206 on target mRNAs in skeletal muscle cells, the effects of overexpression of miR-206 in dystrophic muscles remain to be established. Here, we found that miR-206 overexpression in mdx mouse muscles simultaneously targets multiple mRNAs and proteins implicated in satellite cell differentiation, muscle regeneration, and at the neuromuscular junction. Overexpression of miR-206 also increased the levels of several muscle-specific mRNAs/proteins, while enhancing utrophin A expression at the sarcolemma. Finally, we also observed that the increased expression of miR-206 in dystrophin-deficient mouse muscle decreased the production of proinflammatory cytokines and infiltration of macrophages. Taken together, our results show that miR-206 acts as a pleiotropic regulator that targets multiple key mRNAs and proteins expected to provide beneficial adaptations in dystrophic muscle, thus highlighting its therapeutic potential for DMD.


Asunto(s)
Adaptación Fisiológica , Citocinas/metabolismo , Macrófagos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animales , Regulación de la Expresión Génica , Macrófagos/patología , Masculino , Ratones , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Unión Proteica , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA